读取https://www.kaggle.com/datasets/shivamb/netflix-shows数据集数据,运用python大数据处理与分析的知识,查看缺失值
时间: 2023-08-16 15:07:30 浏览: 133
好的,我们可以使用 pandas 库来读取数据集并查看缺失值。首先需要安装 pandas 库,可以使用以下命令进行安装:
```
pip install pandas
```
然后我们可以使用以下代码进行数据读取和查看缺失值:
```python
import pandas as pd
# 读取数据集
data = pd.read_csv('netflix_titles.csv')
# 查看缺失值
print(data.isnull().sum())
```
这里的 `isnull()` 方法会返回一个布尔类型的 DataFrame,其中缺失值为 True,非缺失值为 False;`sum()` 方法会对每一列进行求和,得到该列缺失值的数量。运行上述代码后,会输出每一列的缺失值数量。
相关问题
使用python爬取https://www.kaggle.com/datasets/ariyoomotade/netflix-data-cleaning-analysis-and-visualization上的数据集
好的,以下是爬取该数据集的Python代码:
```python
import requests
# 设置请求头
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"}
# 发送请求
url = "https://www.kaggle.com/ariyoomotade/netflix-data-cleaning-analysis-and-visualization/download"
response = requests.get(url, headers=headers)
# 输出响应内容
print(response.text)
```
这段代码使用了requests库来发送网络请求,获取数据集的响应内容。请注意,这个网站需要您先登录才能下载数据集,如果您没有登录,代码将无法工作。同时,如果您下载的数据集不同,代码也需要做一些修改。
使用python爬取https://www.kaggle.com/datasets/ariyoomotade/netflix-data-cleaning-analysis-and-visualization上的数据集,并保存在本地文件中,给出详细代码
好的,以下是使用 Python 爬取 Kaggle 上的 Netflix 数据集并保存到本地的代码:
```python
import requests
# 设置请求头
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36"}
# 发送 GET 请求
response = requests.get("https://www.kaggle.com/datasets/download/ariyoomotade/netflix-data-cleaning-analysis-and-visualization",
headers=headers)
# 保存数据集到本地文件
with open("netflix-data-cleaning-analysis-and-visualization.zip", "wb") as f:
f.write(response.content)
```
需要注意的是,我们需要设置请求头,否则 Kaggle 会拒绝我们的请求。此外,由于数据集比较大,下载时间可能会比较长,请耐心等待。
阅读全文
相关推荐
















