自编码实现 Kmeans 聚类 读入 PCA 降维后的二维鸢尾花数据集 按 Kmeans 算法描述的过程完成数据集的聚类处理(取 K=2)的代码

时间: 2023-10-31 17:19:37 浏览: 30
好的,下面是Python代码实现Kmeans聚类自编码,使用PCA降维后的二维鸢尾花数据集,取K=2进行聚类处理: ``` python import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.decomposition import PCA # 读入鸢尾花数据集 data = np.loadtxt('iris_pca.txt', delimiter=',') # 取前两列数据作为特征 X = data[:, :2] # 使用Kmeans算法进行聚类 kmeans = KMeans(n_clusters=2, random_state=0).fit(X) labels = kmeans.labels_ # 构建自编码器 input_dim = X.shape[1] encoding_dim = 1 hidden_dim = 2 input_data = Input(shape=(input_dim,)) hidden_layer = Dense(hidden_dim, activation='relu')(input_data) encoding_layer = Dense(encoding_dim, activation='relu')(hidden_layer) decoding_layer = Dense(hidden_dim, activation='relu')(encoding_layer) output_data = Dense(input_dim, activation='linear')(decoding_layer) autoencoder = Model(inputs=input_data, outputs=output_data) autoencoder.compile(optimizer='adam', loss='mse') # 使用聚类中心初始化编码器权重 autoencoder.layers[1].set_weights([kmeans.cluster_centers_.T]) # 训练自编码器 autoencoder.fit(X, X, epochs=100) # 得到编码器的输出 encoder = Model(inputs=input_data, outputs=encoding_layer) encoded_X = encoder.predict(X) # 对于每个样本,将其通过编码器得到的低维表示与K个聚类中心计算距离,将其归为距离最近的簇 new_labels = [] for i in range(X.shape[0]): dist = [np.linalg.norm(encoded_X[i] - kmeans.cluster_centers_[j]) for j in range(kmeans.n_clusters)] new_labels.append(np.argmin(dist)) # 可视化聚类结果 plt.figure(figsize=(10, 6)) plt.scatter(X[:, 0], X[:, 1], c=new_labels, cmap='viridis') plt.xlabel('PCA component 1') plt.ylabel('PCA component 2') plt.show() ``` 需要注意的是,上述代码中使用了Keras库构建自编码器,需要先安装Keras库。另外,PCA降维的代码未提供,需要先进行PCA降维处理,将数据降维为二维。

相关推荐

最新推荐

Python用K-means聚类算法进行客户分群的实现

1.项目描述 你拥有一个超市(Supermarket Mall)。通过会员卡,你用有一些关于你的客户的基本数据,如客户ID,年龄,性别,年收入和消费分数。 消费分数是根据客户行为和购买数据等定义的参数分配给客户的。 问题...

python实现鸢尾花三种聚类算法(K-means,AGNES,DBScan)

主要介绍了python实现鸢尾花三种聚类算法(K-means,AGNES,DBScan),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

【K-means算法】{1} —— 使用Python实现K-means算法并处理Iris数据集

此处基于K-means算法处理Iris数据集 Kmeans.py模块: import numpy as np class KMeansClassifier(): """初始化KMeansClassifier类""" def __init__(self, k=3, initCent='random', max_iter=500): # 类的成员...

基于kmeans聚类与BP神经网络算法的办公建筑逐时电负荷预测_刘倩颖.pdf

基于青岛某办公建筑2015 年全年逐时总用电能耗及空调用电能耗数据,利用kmeans 聚类算法对其进行聚 类,将全年能耗水平分为四大类。利用求平均值法得到每一类典型设备使用率曲线。将典型曲线的数据、日前两 周数据...

详解Java实现的k-means聚类算法

主要介绍了详解Java实现的k-means聚类算法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

步行高级机器人技术.doc

步行高级机器人技术.doc

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

c语言本题要求编写程序,计算学生们的平均成绩,并统计不及格人数。题目保证输入输出均在整型范围内。

好的,下面是一个简单的 C 语言程序,可以帮助你计算学生们的平均成绩,并统计不及格人数: ```c #include <stdio.h> int main() { int n, sum = 0, fail = 0; scanf("%d", &n); // 输入学生数量 for (int i = 0; i < n; i++) { int score; scanf("%d", &score); // 输入学生的成绩 sum += score; // 累加学生的成绩 if (score < 60) {

资料计算机二级Python真题及答案解析1练习.pdf

。。。