自编码实现 Kmeans 聚类 读入鸢尾花数据集 按 Kmeans 算法描述的过程完成数据集的聚类处理(取 K=2)但是我需要读入自己降维后的数据
时间: 2023-10-31 07:56:35 浏览: 146
好的,如果你需要使用自己降维后的数据进行 Kmeans 聚类处理,你可以先将数据保存为一个 csv 文件,然后使用 pandas 库中的 `read_csv` 函数读取该文件。假设你的降维后的数据已经保存为 `pca_data.csv` 文件,那么你可以使用以下代码读取该文件:
```python
import pandas as pd
# 读入降维后的数据
data = pd.read_csv('pca_data.csv', header=None)
X = data.values
```
上述代码中,`read_csv` 函数的第一个参数是 csv 文件的路径,`header=None` 表示该文件没有列名,`X = data.values` 将数据转换为 numpy 数组,方便后续的处理。你可以根据自己的数据情况,修改上述代码中的文件路径和其他参数。
接下来,我们可以使用自编码器对降维后的数据进行重构,然后再使用 Kmeans 聚类算法对重构后的数据进行聚类。具体过程如下:
1. 定义自编码器模型,包括编码器和解码器两个部分。编码器将原始数据映射到低维空间,解码器将低维空间的表示映射回原始数据空间。
2. 使用编码器对降维后的数据进行编码,得到低维空间的表示。
3. 使用解码器对低维空间的表示进行解码,得到重构后的数据。
4. 使用 Kmeans 聚类算法对重构后的数据进行聚类。
以下是完整的代码实现:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from keras.layers import Input, Dense
from keras.models import Model
# 读入降维后的数据
data = pd.read_csv('pca_data.csv', header=None)
X = data.values
# 标准化数据
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 定义自编码器模型
input_dim = X.shape[1]
encoding_dim = 2
input_layer = Input(shape=(input_dim,))
encoder_layer = Dense(encoding_dim, activation='relu')(input_layer)
decoder_layer = Dense(input_dim, activation='sigmoid')(encoder_layer)
autoencoder = Model(inputs=input_layer, outputs=decoder_layer)
# 编译自编码器模型
autoencoder.compile(optimizer='adam', loss='mean_squared_error')
# 训练自编码器模型
autoencoder.fit(X_scaled, X_scaled, epochs=50, batch_size=16)
# 使用编码器对降维后的数据进行编码
encoder = Model(inputs=input_layer, outputs=encoder_layer)
encoded_data = encoder.predict(X_scaled)
# 使用解码器对编码后的数据进行解码
decoder = Model(inputs=encoder_layer, outputs=decoder_layer)
decoded_data = decoder.predict(encoded_data)
# 使用 Kmeans 聚类算法对重构后的数据进行聚类
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=2)
kmeans.fit(decoded_data)
labels = kmeans.labels_
# 将聚类结果可视化
import matplotlib.pyplot as plt
plt.scatter(X[labels == 0, 0], X[labels == 0, 1], c='r', label='Cluster 1')
plt.scatter(X[labels == 1, 0], X[labels == 1, 1], c='b', label='Cluster 2')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.legend()
plt.show()
```
上述代码中,我们使用了 PCA 对降维后的数据进行了可视化,因此在可视化聚类结果时需要使用 PCA 的两个主成分。你可以根据自己的数据情况,修改上述代码中的文件路径和其他参数。
阅读全文