python代码实现:LDA算法进行人脸识别
时间: 2023-07-25 15:44:25 浏览: 251
以下是使用Python实现LDA人脸识别的示例代码:
```python
import cv2
import numpy as np
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
# 读取人脸图像并进行预处理
def preprocess_image(image_path):
image = cv2.imread(image_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=5)
for (x, y, w, h) in faces:
face = gray[y:y+h, x:x+w]
face = cv2.resize(face, (100, 100))
return face.flatten()
# 获取人脸数据和标签
def get_data():
data = []
labels = []
for i in range(1, 11):
for j in range(1, 6):
image_path = f"person{i}/{j}.jpg"
label = i
face = preprocess_image(image_path)
data.append(face)
labels.append(label)
return np.array(data), np.array(labels)
# 训练LDA模型并返回模型和均值向量
def train_lda(data, labels):
lda = LDA()
lda.fit(data, labels)
return lda, lda.means_
# 预测人脸图像的标签
def predict(lda, means, image_path):
face = preprocess_image(image_path)
face = face.reshape(1, -1)
face -= means
prediction = lda.predict(face)
return prediction[0]
# 测试LDA人脸识别
data, labels = get_data()
lda, means = train_lda(data, labels)
test_image_path = "test.jpg"
prediction = predict(lda, means, test_image_path)
print(f"The predicted label is {prediction}")
```
在上述示例代码中,`preprocess_image`函数用于读取人脸图像并进行预处理,包括灰度化、裁剪、缩放等操作。`get_data`函数用于获取人脸数据和标签,其中包括10个人的50张人脸图像。`train_lda`函数用于训练LDA模型,并返回模型和均值向量。`predict`函数用于预测人脸图像的标签。最后,通过调用`get_data`、`train_lda`和`predict`函数来测试LDA人脸识别的准确率。
阅读全文