matlab人脸识别代码RBG
时间: 2023-07-02 12:10:06 浏览: 146
以下是使用 MATLAB 进行 RGB 人脸识别的示例代码:
首先,需要加载训练样本和测试图像。训练样本应该包含多个人的 RGB 图像,测试图像应该是要进行识别的图像。
```matlab
% Load training images
faceDatabase = imageSet('path/to/training/images');
% Load test image
testImage = imread('path/to/test/image');
```
接下来,将训练样本转换为灰度图像,并提取每个图像的特征向量。这里使用主成分分析 (PCA) 进行特征提取。
```matlab
% Convert training images to grayscale
for i = 1:faceDatabase.Count
img = read(faceDatabase, i);
imgGray = rgb2gray(img);
trainingData(:,i) = imgGray(:);
end
% Perform principal component analysis (PCA) on the training data
[coeff, score, latent] = pca(trainingData');
```
然后,将测试图像转换为灰度图像,并将其投影到主成分空间中。这里只使用前 N 个主成分。
```matlab
% Convert test image to grayscale
testImageGray = rgb2gray(testImage);
% Project test image onto principal component space
numComponents = 100;
testData = double(testImageGray(:));
testDataCentered = testData - mean(trainingData, 2);
testDataProjected = coeff(:,1:numComponents)' * testDataCentered;
```
最后,比较测试图像的投影向量与训练样本的投影向量,并找到最接近的匹配。这里使用欧几里得距离进行匹配。
```matlab
% Compare test image to training images using Euclidean distance
minDistance = Inf;
minIndex = -1;
for i = 1:faceDatabase.Count
dist = norm(testDataProjected - score(i,1:numComponents)');
if dist < minDistance
minDistance = dist;
minIndex = i;
end
end
% Display result
match = read(faceDatabase, minIndex);
imshow(match);
```
完整代码如下:
```matlab
% Load training images
faceDatabase = imageSet('path/to/training/images');
% Load test image
testImage = imread('path/to/test/image');
% Convert training images to grayscale
for i = 1:faceDatabase.Count
img = read(faceDatabase, i);
imgGray = rgb2gray(img);
trainingData(:,i) = imgGray(:);
end
% Perform principal component analysis (PCA) on the training data
[coeff, score, latent] = pca(trainingData');
% Convert test image to grayscale
testImageGray = rgb2gray(testImage);
% Project test image onto principal component space
numComponents = 100;
testData = double(testImageGray(:));
testDataCentered = testData - mean(trainingData, 2);
testDataProjected = coeff(:,1:numComponents)' * testDataCentered;
% Compare test image to training images using Euclidean distance
minDistance = Inf;
minIndex = -1;
for i = 1:faceDatabase.Count
dist = norm(testDataProjected - score(i,1:numComponents)');
if dist < minDistance
minDistance = dist;
minIndex = i;
end
end
% Display result
match = read(faceDatabase, minIndex);
imshow(match);
```
阅读全文