解释它们并换一种表达方式Complex() { real = 0; imag = 0; } Complex(double r, double i) { real = r; imag = ifriend Complex operator-=(Complex &c1, Complex &c2); void display();class String  {  private:     char *str;  public:     String( char *s )       {         str = new char[strlen(s) + 1];         strcpy(str, s);      }     friend String operator+=( String& s1,String & s2) ;      String operator+=( String& s1,String & s2)     {         char *p = new char[strlen(s1.str) + strlen(s2.str) + 1];;

时间: 2024-01-24 11:18:29 浏览: 25
这段代码定义了一个名为 Complex 的类,表示一个复数,其中包括实部和虚部。它有两个构造函数:一个是默认构造函数,将实部和虚部都初始化为0;另一个构造函数接受两个参数,分别是实部和虚部的值。 此外,还定义了一个名为 operator-= 的运算符重载函数,用于计算两个复数的差,并返回结果。 另外,还定义了一个名为 display 的成员函数,用于将该复数对象的实部和虚部输出到控制台上。 另一段代码定义了一个名为 String 的类,表示一个字符串,其中包括一个字符指针 str,指向存储该字符串的内存空间。它有一个构造函数,接受一个字符数组作为参数,并动态分配内存存储该字符串。此外,还定义了一个名为 operator+= 的运算符重载函数,用于将两个字符串合并为一个新的字符串,并返回结果。 在 operator+= 函数的实现中,首先动态分配一个新的字符数组,大小为两个字符串长度之和加1(为了存储字符串结束符'\0')。然后将两个字符串拷贝到该数组中,并返回一个新的 String 对象,其 str 成员指向该数组。
相关问题

定义一个复数类Complex,重载运算符-+,40,使之能用于复数的加、乘,运算符重载西数作为Complex类的成员丽数。编气程序,分别求两个是数之和。乘积。 己知:Complex类为: class Complex { public: Complex(§real=0;imag=0;} Complex(double r,double i) {real=r;imag=i;} Complex operator+(Complex &c2); Complex operator* (Complex &c2); void display); private: double real; double imag; 当前编程语言为:C++

好的,我理解了你的问题。下面是实现要求的代码: ```cpp #include<iostream> using namespace std; class Complex { public: Complex(double r=0, double i=0) {real=r; imag=i;} Complex operator+(Complex &c2); Complex operator*(Complex &c2); void display(); private: double real; double imag; }; Complex Complex::operator+(Complex &c2) { Complex temp; temp.real = real + c2.real; temp.imag = imag + c2.imag; return temp; } Complex Complex::operator*(Complex &c2) { Complex temp; temp.real = real * c2.real - imag * c2.imag; temp.imag = real * c2.imag + imag * c2.real; return temp; } void Complex::display() { cout << real << "+" << imag << "i" << endl; } int main() { Complex c1(1,2), c2(3,4), csum, cproduct; csum = c1 + c2; cproduct = c1 * c2; csum.display(); cproduct.display(); return 0; } ``` 在上面的代码中,我们定义了一个Complex类,重载了运算符+和*。运算符+实现了复数的加法,运算符*实现了复数的乘法。我们还定义了一个display函数,用于输出复数的结果。 在main函数中,我们首先创建了两个Complex对象c1和c2,并分别赋初值。然后使用重载的+运算符求出了它们的和,使用重载的*运算符求出了它们的积,并将结果存储在csum和cproduct对象中。最后,我们调用display函数输出它们的和与积。 运行程序,输出结果如下: ``` 4+6i -5+10i ``` 说明我们的程序实现了复数的加法和乘法。

用C++给下面的代码写运行部分。class COMPLEX {private: double real; double imag;public: COMPLEX(double r = 0, double i = 0) : real(r), imag(i) {} COMPLEX operator+(const COMPLEX& rhs) const { return COMPLEX(real + rhs.real, imag + rhs.imag); } COMPLEX operator-(const COMPLEX& rhs) const { return COMPLEX(real - rhs.real, imag - rhs.imag); } COMPLEX& operator=(const COMPLEX& rhs) { real = rhs.real; imag = rhs.imag; return *this; }};

以下是用C++编写的运行部分: ```c++ #include <iostream> using namespace std; class COMPLEX { private: double real; double imag; public: COMPLEX(double r = 0, double i = 0) : real(r), imag(i) {} COMPLEX operator+(const COMPLEX& rhs) const { return COMPLEX(real + rhs.real, imag + rhs.imag); } COMPLEX operator-(const COMPLEX& rhs) const { return COMPLEX(real - rhs.real, imag - rhs.imag); } COMPLEX& operator=(const COMPLEX& rhs) { real = rhs.real; imag = rhs.imag; return *this; } }; int main() { COMPLEX a(1, 2), b(3, 4), c; c = a + b; cout << c.real << " + " << c.imag << "i" << endl; c = a - b; cout << c.real << " + " << c.imag << "i" << endl; return 0; } ``` 在上述代码中,我们定义了一个名为`COMPLEX`的类,它表示一个复数,具有实部和虚部两个成员变量。我们使用构造函数初始化这两个成员变量,并且使用运算符重载函数`operator+`和`operator-`分别实现了复数的加法和减法。同时,我们也定义了一个赋值运算符`operator=`,用于将一个复数赋值给另一个复数。 在`main()`函数中,我们创建了两个复数对象`a`和`b`,并将它们相加和相减,将结果分别赋值给复数对象`c`。最后,我们输出了`c`的实部和虚部,以验证我们的代码是否正确。

相关推荐

把下面代码的运算符重载改为友元函数形式#include<iostream> using namespace std; class complex { private: double real; double imag; public: complex(double r = 0.0, double i = 0.0); void print(); complex operator -=(complex c); complex operator *=(complex c); complex operator /=(complex c); complex operator ++(); complex operator ++(int); }; complex::complex(double r, double i) { real = r; imag = i; } complex complex::operator -=(complex c) { complex temp; temp.real = real - c.real; temp.imag = imag - c.imag; real = temp.real; imag = temp.imag; return temp; } complex complex::operator *=(complex c) { complex temp; temp.real = real * c.real - imag * c.imag; temp.imag = real * c.imag + imag * c.real; real = temp.real; imag = temp.imag; return temp; } complex complex::operator /=(complex c) { complex temp; double d; d = c.real * c.real + c.imag * c.imag; temp.real = (real * c.real + imag * c.imag) / d; temp.imag = (c.real * imag - real * c.imag) / d; real = temp.real; imag = temp.imag; return temp; } complex complex::operator ++() { complex temp; temp.real = ++real; temp.imag = ++imag; return temp; } complex complex::operator ++(int) { complex temp(real, imag); real++; imag++; return temp; } void complex::print() { cout << real; if (imag >= 0) cout << '+'; cout << imag << 'i' << endl; } int main() { complex A(30, 40), B(15, 30),C; C = A.operator++(1); cout << "C=A++后,C为:"; C.print(); cout << "A为:"; A.print(); C = A.operator++(); cout << "C=++A后,C为:"; C.print(); cout << "A为:"; A.print(); A *= B; cout << "A*=B后,A为:"; A.print(); A /= B; cout << "A/=B后,A为: "; A.print(); cout << "B为:"; B.print(); return 0; }

最新推荐

recommend-type

Java面试整理,涵盖基础、JVM、线程并发、框架、MySQL、微服务、Redis、中间件、数据结构与算法等。陆续完善中.zip

Java面试整理,涵盖基础、JVM、线程并发、框架、MySQL、微服务、Redis、中间件、数据结构与算法等。陆续完善中
recommend-type

chromedriver-mac-x64_121.0.6167.184.zip

chromedriver-mac-x64_121.0.6167.184.zip
recommend-type

【Java面试+Java技术文章汇总】 涵盖大部分Java程序员所需要掌握的核心知识。.zip

【Java面试+Java技术文章汇总】 涵盖大部分Java程序员所需要掌握的核心知识。
recommend-type

单循环链表实现约瑟夫环课程设计

"本课程设计聚焦于JOSEPH环,这是一种经典的计算机科学问题,涉及链表数据结构的应用。主要目标是让学生掌握算法设计和实现,特别是将类C语言的算法转化为实际的C程序,并在TC平台上进行调试。课程的核心内容包括对单循环链表的理解和操作,如创建、删除节点,以及链表的初始化和构建。 设计的核心问题是模拟编号为1至n的人围绕一圈报数游戏。每轮报数后,报到m的人会被淘汰,m的值由被淘汰者携带的密码更新,游戏继续进行直至所有人为止。为了实现这一过程,设计者采用单向循环链表作为数据结构,利用其动态内存分配和非随机存取的特点来模拟游戏中的人员变动。 在数据结构设计部分,逻辑上,链表作为一种线性结构,通过链式存储方式保持了线性的顺序,但物理存储并不需要连续,结点之间的关联通过指针连接,这使得插入和删除节点更加灵活,避免了顺序存储可能导致的空间浪费和扩展困难。通过链式存储,可以有效地适应约瑟夫环大小的变化。 具体操作步骤包括:首先输入初始参数,如报数上限m的初值和参与者的数量n,以及每个参与者对应的密码。然后,通过建立输入处理函数,读取这些数据,并利用这些信息构建单循环链表。接下来,设计一个输出函数,根据链表中的节点顺序,按照出列的规则顺序输出每个人员的编号。 测试案例中提到,当m的初值为20,n=7,每个人的密码分别为3, 1, 7, 2, 4, 7, 4时,通过编程实现的约瑟夫环算法应该能够正确地模拟并输出出列顺序。 这个课程设计不仅锻炼了学生的编程技能,还让他们理解了链表在解决此类问题中的关键作用,提升了他们对数据结构的理解和应用能力。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MySQL数据库集群部署与管理:实现高性能与高可用性(集群部署实战)

![MySQL数据库集群部署与管理:实现高性能与高可用性(集群部署实战)](https://img-blog.csdnimg.cn/img_convert/019dcf34fad68a6bea31c354e88fd612.png) # 1. MySQL数据库集群基础** MySQL数据库集群是一种将多个MySQL服务器连接在一起,以提高性能、可用性和可扩展性的解决方案。通过将数据分布在多个服务器上,集群可以处理大量并发请求,并提供冗余以防止单点故障。 集群架构通常包括一个主服务器和多个从服务器。主服务器负责处理写入操作,而从服务器负责处理读取操作。集群通信通过复制技术实现,它确保从服务器与
recommend-type

python控制小数输出精度

在Python中,如果你想要控制浮点数的小数位数,可以使用`format()`函数或者`round()`函数结合字符串格式化。 1. `format()`函数:你可以指定特定的位置占位符,并使用`.n`来表示保留n位小数。例如: ```python num = 3.141592653589793 formatted_num = '{:.2f}'.format(num) # 保留两位小数 print(formatted_num) # 输出 "3.14" ``` 在这个例子中,`.2f`表示最多保留两位小数。 2. `round()`函数:它会直接对数字进行四舍五入到指定的小数位数。例如:
recommend-type

掌握Makefile:中文教程解析与实践指南

本文是一篇关于Makefile的详细介绍教程,适合Windows程序员了解并掌握这一关键的工具。Makefile在Unix和Linux环境中尤其重要,因为它用于自动化软件编译过程,定义了工程的编译规则,决定文件之间的依赖关系以及编译顺序。它不仅影响到大型项目管理和效率,还体现了一个专业程序员的基本技能。 Makefile的核心是基于文件依赖性,通过一系列规则来指导编译流程。在这个教程中,作者着重讲解GNU Make,它是目前应用广泛且遵循IEEE 1003.2-1992标准(POSIX.2)的工具,适用于Red Hat Linux 8.0环境,使用的编译器主要包括GCC和CC,针对的是C/C++源代码的编译。 文章内容将围绕以下几个部分展开: 1. **Makefile基础知识**:介绍Makefile的基本概念,包括为何在没有IDE的情况下需要它,以及它在工程中的核心作用——自动化编译,节省时间和提高开发效率。 2. **Make命令与工具**:解释Make命令的作用,它是如何解释makefile中的指令,并提到Delphi和Visual C++等IDE中内置的类似功能。 3. **依赖性管理**:讲解Makefile如何处理文件之间的依赖关系,例如源代码文件间的依赖,以及何时重新编译哪些文件。 4. **实际编写示例**:以C/C++为例,深入剖析makefile的编写技巧,可能涉及到的规则和语法,以及如何利用Makefile进行复杂操作。 5. **通用原则与兼容性**:尽管不同厂商的Make工具可能有不同的语法,但它们在本质上遵循相似的原理。作者选择GNU Make是因为其广泛使用和标准化。 6. **参考资料**:鼓励读者查阅编译器文档,以获取更多关于C/C++编译的细节,确保全面理解Makefile在实际项目中的应用。 学习和掌握Makefile对于提升编程技能,特别是对那些希望在Unix/Linux环境下工作的开发者来说,至关重要。它不仅是技术栈的一部分,更是理解和组织大规模项目结构的关键工具。通过阅读这篇教程,读者能够建立起自己的Makefile编写能力,提高软件开发的生产力。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MySQL数据库高可用性架构设计:打造7x24不间断服务(高可用架构秘籍)

![MySQL数据库高可用性架构设计:打造7x24不间断服务(高可用架构秘籍)](https://mona.media/wp-content/uploads/2023/03/tim-kiem-thi-truong-ngach-tren-google.png) # 1. MySQL数据库高可用性概述** **1.1 高可用性概念** 高可用性是指系统能够在发生故障时,仍然能够持续提供服务,最大程度地减少业务中断时间。对于MySQL数据库而言,高可用性至关重要,因为数据库是许多应用程序的核心组件,其宕机可能导致严重的后果。 **1.2 高可用性目标** MySQL数据库的高可用性目标通常包