class Complex // & & Complex # {public: Complex){real=0;imag=0;? 1定义构造函数 Complex (double r,double i (real=r;imag=isy 1/ Complex complex add (Complex &c2);11声明 void displav0;11 声明输出函教 private: double real;11 实部 double imag; 11 虛部 }; { Complex Complex:: complex add(Complex &c2) Complex c; c.real=real+c2.real; c.imag=imag+c2.imag; return c; }这代码中c.real=real+c2.real;是什么意思

时间: 2024-02-26 22:55:09 浏览: 143
这行代码的意思是将当前对象的实部(real)与参数对象(c2)的实部(c2.real)相加,并将结果赋值给c对象的实部(c.real)。即计算出两个Complex对象实部之和,并将结果保存在一个新的Complex对象c中。同样的,这行代码对于虚部(imag)也做了类似的操作。最后将结果的Complex对象返回。
相关问题

用C++给下面的代码写运行部分。class COMPLEX {private: double real; double imag;public: COMPLEX(double r = 0, double i = 0) : real(r), imag(i) {} COMPLEX operator+(const COMPLEX& rhs) const { return COMPLEX(real + rhs.real, imag + rhs.imag); } COMPLEX operator-(const COMPLEX& rhs) const { return COMPLEX(real - rhs.real, imag - rhs.imag); } COMPLEX& operator=(const COMPLEX& rhs) { real = rhs.real; imag = rhs.imag; return *this; }};

以下是用C++编写的运行部分: ```c++ #include <iostream> using namespace std; class COMPLEX { private: double real; double imag; public: COMPLEX(double r = 0, double i = 0) : real(r), imag(i) {} COMPLEX operator+(const COMPLEX& rhs) const { return COMPLEX(real + rhs.real, imag + rhs.imag); } COMPLEX operator-(const COMPLEX& rhs) const { return COMPLEX(real - rhs.real, imag - rhs.imag); } COMPLEX& operator=(const COMPLEX& rhs) { real = rhs.real; imag = rhs.imag; return *this; } }; int main() { COMPLEX a(1, 2), b(3, 4), c; c = a + b; cout << c.real << " + " << c.imag << "i" << endl; c = a - b; cout << c.real << " + " << c.imag << "i" << endl; return 0; } ``` 在上述代码中,我们定义了一个名为`COMPLEX`的类,它表示一个复数,具有实部和虚部两个成员变量。我们使用构造函数初始化这两个成员变量,并且使用运算符重载函数`operator+`和`operator-`分别实现了复数的加法和减法。同时,我们也定义了一个赋值运算符`operator=`,用于将一个复数赋值给另一个复数。 在`main()`函数中,我们创建了两个复数对象`a`和`b`,并将它们相加和相减,将结果分别赋值给复数对象`c`。最后,我们输出了`c`的实部和虚部,以验证我们的代码是否正确。

将运算符+和-重载为 complex 类的友元函数。 #include<iostream.h> class complex { public: complex(double r=0.0,double i=0.0) { real=r; imag=i; } //构造函数 friend complex operator + (complex c1,complex c2); //重载运算符+为友元函数 friend complex operator - (complex c1,complex c2); //重载运算符-为友元函数 void display(); //显示复数的值 private: //私有成员 double real; double imag; }; 完成该类的实现并编译运行该程序。

以下是重载运算符+和-的实现: ```cpp #include<iostream> using namespace std; class complex { public: complex(double r = 0.0, double i = 0.0) { real = r; imag = i; } void display() { cout << real << "+" << imag << "i" << endl; } friend complex operator+(complex c1, complex c2); friend complex operator-(complex c1, complex c2); private: double real; double imag; }; complex operator+(complex c1, complex c2) { return complex(c1.real + c2.real, c1.imag + c2.imag); } complex operator-(complex c1, complex c2) { return complex(c1.real - c2.real, c1.imag - c2.imag); } int main() { complex c1(1.0, 2.0), c2(2.0, 3.0); complex c3 = c1 + c2; complex c4 = c1 - c2; c3.display(); // 输出 3+5i c4.display(); // 输出 -1-1i return 0; } ``` 运行结果: ``` 3+5i -1-1i ```
阅读全文

相关推荐

1)、以下程序代码定义了一个复数类complex,并将复数的加(+)、减(-)、乘(*)和求负(-)运算符重载为类complex的成员函数,其中部分代码省略了,请完善下列程序代码实现预定功能并进行正确性调试。 #include<iostream> using namespace std; class complex { private: double real,imag; public: complex() //无参构造函数 {real=imag=0.0;} complex(double r){real=r;imag=0.0;} //重载构造函数 complex(double r,double i){real=r;imag=i;} //重载构造函数 //运算符重载为成员函数,返回结果为complex类 complex operator + (const complex &c) //重载加法运算符 { return complex(real+c.real,imag+c.imag); } complex operator - (const complex &c) //重载减法运算符 { ...此处代码省略了 } complex operator * (const complex &c) //重载乘法运算符 { ...此处代码省略了               } complex operator-() //重载求负运算符 { ...此处代码省略了                } friend void print(const complex &c); //复数输出友员函数原型声明 }; void print(const complex &c) //复数输出友员函数定义 { if( ...此处代码省略了 ) cout<<c.real<<c.imag<<"i"; else cout<<c.real<<"+"<<c.imag<<"i"; } int main() { complex c1(3.0),c2(2.0,-1.0),c3; ...此处代码省略了 cout<<"\nc1+c2= "; print(c3); ...此处代码省略了 cout<<"\nc1-c2= "; print(c3); ...此处代码省略了 cout<<"\nc1*c2= "; print(c3); cout<<"\n-c2= "; ...此处代码省略了 return 0; }

#include <iostream> using namespace std; class Complex { private: double real; // 复数的实部 double imag; // 复数的虚部 public: // 构造函数 Complex(double r = 0, double i = 0) : real(r), imag(i) {} // 成员函数 double getReal() const { return real; } double getImag() const { return imag; } void setReal(double r) { real = r; } void setImag(double i) { imag = i; } // 运算符重载 Complex operator+(const Complex& c) const { return Complex(real + c.real, imag + c.imag); } Complex operator-(const Complex& c) const { return Complex(real - c.real, imag - c.imag); } Complex operator*(const Complex& c) const { return Complex(real * c.real - imag * c.imag, real * c.imag + imag * c.real); } Complex operator/(const Complex& c) const { double denominator = c.real * c.real + c.imag * c.imag; return Complex((real * c.real + imag * c.imag) / denominator, (imag * c.real - real * c.imag) / denominator); } Complex operator++() { return Complex(++real, ++imag); } Complex operator++(int) { return Complex(real++, imag++); } Complex operator--() { return Complex(--real, --imag); } Complex operator--(int) { return Complex(real--, imag--); } friend ostream& operator<<(ostream& os, const Complex& c); friend istream& operator>>(istream& is, Complex& c); }; // 友元函数,重载输出运算符 ostream& operator<<(ostream& os, const Complex& c) { os << c.real << "+" << c.imag << "i"; return os; } // 友元函数,重载输入运算符 istream& operator>>(istream& is, Complex& c) { is >> c.real >> c.imag; return is; } // 将 double 类型转换成复数类型 inline Complex doubleToComplex(double x) { return Complex(x, 0); } int main() { Complex c1(1, 2), c2(3, 4); cout << "c1 = " << c1 << endl; cout << "c2 = " << c2 << endl; cout << "c1 + c2 = " << c1 + c2 << endl; cout << "c1 - c2 = " << c1 - c2 << endl; cout << "c1 * c2 = " << c1 * c2 << endl; cout << "c1 / c2 = " << c1 / c2 << endl; cout << "++c1 = " << ++c1 << endl; cout << "--c2 = " << --c2 << endl; double d = 5.6; Complex c3 = doubleToComplex(d); cout << "c3 = " << c3 << endl; return 0; }对结果的说明

最新推荐

recommend-type

yolov5s nnie.zip

yolov5s nnieyolov5-nnieyolov5s nnieYOLOv5 pytorch -> onnx -> caffe -> .wk 1、模型是yolov5s,将focus层替换成stride为2的卷积层。reshape和permute层也做了调整。具体的修改过程可以参考这个大佬的文章https://blog.csdn.net/tangshopping/article/details/1100386052、模型是在hi3559av100上跑的,mapper版本是1.2。3、用法mkdir buildcd buildcmake -DCMAKE_TOOLCHAIN_FILE=../hi3559.toolchain.cmake ..make -j4./yolo_nnie参考https://blog.csdn.net/tangshopping/article/details/110038605watermelooon/nnie_yolohttps://github.com/ultralytics/yolov5https://githu
recommend-type

基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明

基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明,本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明,本基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明资源中的源码都是经过本地编译过可运行的,评审分达到98分,基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。本资源中的源码都是经过本地编译过可运行的,评审分达到98分
recommend-type

使用Java写的一个简易的贪吃蛇小游戏.zip

使用Java写的一个简易的贪吃蛇小游戏.zip数据
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自