attention unet keras

时间: 2023-05-02 11:01:17 浏览: 68
b'attention unet keras' 是关于基于Keras框架的Attention U-Net神经网络的话题。这个神经网络结合了U-Net和Attention机制,用于语义分割任务,能够提高图像分割的精度和效果。
相关问题

请写出使用attention-Unet模型分割乳腺超声图像的代码

使用attention-Unet模型分割乳腺超声图像的代码如下:from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate# Input Layer inputs = Input(shape=(None, None, 1))# Attention U-Net conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs) conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1) conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2) conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3) conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)# Attention Mechanism attention_conv = Conv2D(1, 1, activation='sigmoid')(conv4) up1 = UpSampling2D(size=(2,2))(attention_conv) up1 = concatenate([conv3,up1], axis=3) conv5 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up1) conv5 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)up2 = UpSampling2D(size=(2,2))(conv5) up2 = concatenate([conv2,up2], axis=3) conv6 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up2) conv6 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)up3 = UpSampling2D(size=(2,2))(conv6) up3 = concatenate([conv1,up3], axis=3) conv7 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up3) conv7 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)# Output Layer outputs = Conv2D(1, 1, activation='sigmoid')(conv7)# Model Compilation model = Model(inputs=[inputs], outputs=[outputs]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

unet添加注意力机制代码位置

在UNet模型中添加注意力机制有多种实现方式,以下是其中一种常见的实现方法: 1. 在模型定义文件中导入相关库: ```python from tensorflow.keras.layers import Conv2D, Input, MaxPooling2D, concatenate, UpSampling2D, Activation, multiply, add ``` 2. 定义注意力机制模块: ```python def attention_block(input_x, input_g, inter_channel): # Input_x: lower-level feature maps # Input_g: higher-level feature maps # Inter_channel: number of filters in attention block # Lower-level feature map branch (x) x = Conv2D(inter_channel, kernel_size=(1, 1), strides=(1, 1), padding='same', use_bias=False)(input_x) x = Activation('relu')(x) # Higher-level feature map branch (g) g = Conv2D(inter_channel, kernel_size=(1, 1), strides=(1, 1), padding='same', use_bias=False)(input_g) g = Activation('relu')(g) # Combine branches z = add([x, g]) z = Conv2D(inter_channel, kernel_size=(1, 1), strides=(1, 1), padding='same', use_bias=False)(z) z = Activation('relu')(z) # Attention map branch (s) s = Conv2D(1, kernel_size=(1, 1), strides=(1, 1), padding='same', use_bias=False)(z) s = Activation('sigmoid')(s) # Apply attention map to lower-level feature map x = multiply([x, s]) return x ``` 3. 在UNet模型中添加注意力机制: ```python def unet_attention(input_size=(256, 256, 1)): # Encoder inputs = Input(input_size) conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs) conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1) conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2) conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3) conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4) drop4 = Dropout(0.5)(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4) conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5) drop5 = Dropout(0.5)(conv5) # Decoder with attention blocks up6 = UpSampling2D(size=(2, 2))(drop5) att6 = attention_block(conv4, up6, 512) merge6 = concatenate([att6, drop4], axis=3) conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6) conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6) up7 = UpSampling2D(size=(2, 2))(conv6) att7 = attention_block(conv3, up7, 256) merge7 = concatenate([att7, conv3], axis=3) conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7) conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7) up8 = UpSampling2D(size=(2, 2))(conv7) att8 = attention_block(conv2, up8, 128) merge8 = concatenate([att8, conv2], axis=3) conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8) conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8) up9 = UpSampling2D(size=(2, 2))(conv8) att9 = attention_block(conv1, up9, 64) merge9 = concatenate([att9, conv1], axis=3) conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9) conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9) conv10 = Conv2D(1, 1, activation='sigmoid')(conv9) model = Model(inputs=inputs, outputs=conv10) return model ``` 在以上代码中,attention_block函数定义了一个注意力机制模块,其中包含了三个分支:低层特征图分支(x)、高层特征图分支(g)和注意力图分支(s)。在UNet模型中,将注意力机制模块插入到Decoder的每一层中,将低层特征图作为输入x,将上一层的上采样结果作为输入g,经过注意力机制模块处理后得到加权低层特征图x,并将其与上一层特征图进行融合。最终输出的是一个二分类的分割结果。

相关推荐

最新推荐

recommend-type

使用pytorch实现论文中的unet网络

Unet网络设计的步骤: 1. 设计Unet网络工厂模式 2. 设计编解码结构 3. 设计卷积模块 4. unet实例模块 Unet网络最重要的特征: 1. 编解码结构。 2. 解码结构,比FCN更加完善,采用连接方式。 3. 本质是一个框架,编码...
recommend-type

基于pytorch的UNet_demo实现及训练自己的数据集.docx

基于pytorch的UNet分割网络demo实现,及训练自己的数据集。包括对相关报错的分析。收集了几个比较好的前辈的网址。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

输出这段Python代码输出所有3位整数中,个位是5且是3的倍数的整数

``` for i in range(100,1000): if i%10 == 5 and i%3 == 0: print(i) ``` 输出结果: ``` 105 135 165 195 225 255 285 315 345 375 405 435 465 495 525 555 585 615 645 675 705 735 765 795 825 855 885 915 945 975 ```