我需要改变数据集初始化方式,指定xavier初始化
时间: 2024-02-25 08:55:25 浏览: 73
代码详解:基于Python建立任意层数的深度神经网络
好的,你可以使用PyTorch提供的`torch.nn.init.xavier_uniform_()`函数来进行Xavier初始化。以下是一个示例代码,它使用Xavier初始化来初始化VGG16模型的权重:
```python
import torch
import torch.nn as nn
import torch.nn.init as init
class VGG16(nn.Module):
def __init__(self, num_classes=1000):
super(VGG16, self).__init__()
# 定义卷积层和池化层
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
# 定义全连接层
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
# 对模型的权重进行Xavier初始化
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.xavier_uniform_(m.weight)
if m.bias is not None:
init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
init.xavier_uniform_(m.weight)
if m.bias is not None:
init.zeros_(m.bias)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
```
这个示例代码中,在定义模型的权重时,使用了PyTorch提供的`nn.init.xavier_uniform_()`函数来对权重进行Xavier初始化。这个函数会将权重初始化为均匀分布的随机数,并且满足一定的方差和均值要求。这样可以使得模型的训练更加稳定和有效。
阅读全文