用python语言实现带输出的NTRUsign算法,用到的函数都要自己编写
时间: 2024-01-22 18:20:51 浏览: 64
好的,以下是带输出的NTRUsign算法的python实现:
```python
import random
from hashlib import sha256
def ntru_gen_params(q, n, p):
"""生成NTRU签名算法的参数"""
while True:
f = [random.randint(-(p-1)//2, (p-1)//2) for _ in range(n)]
g = [random.randint(-(p-1)//2, (p-1)//2) for _ in range(n)]
poly_f = Poly(f, n)
poly_g = Poly(g, n)
h = poly_f * poly_g % q
if h.inv_mod_p(p) is not None:
return f, g, h
def ntru_keygen(q, n, p):
"""NTRU签名算法的密钥生成过程"""
f, g, h = ntru_gen_params(q, n, p)
while True:
s = [random.randint(-(p-1)//2, (p-1)//2) for _ in range(n)]
poly_s = Poly(s, n)
e = [random.randint(-(p-1)//2, (p-1)//2) for _ in range(n)]
poly_e = Poly(e, n)
v = (p * poly_s - poly_e) % q
if v.inv_mod_p(p) is not None:
break
return f, g, h, v
def ntru_sign(m, f, g, h, v, q, p, d):
"""NTRU签名算法"""
k = sha256(m.encode()).digest()
k = [int.from_bytes(k[i:i+4], byteorder='big') for i in range(0, len(k), 4)]
r = [random.randint(-(p-1)//2, (p-1)//2) for _ in range(n)]
poly_r = Poly(r, n)
e = [random.randint(-(p-1)//2, (p-1)//2) for _ in range(n)]
poly_e = Poly(e, n)
f_poly = Poly(f, n)
h_poly = Poly(h, n)
c = (f_poly * poly_r + p * poly_e) % q
t = ((Poly(k, n) + d * c) * v) % q
z = (t * h_poly.inv_mod_p(p)) % q
return c, z
def ntru_verify(m, c, z, f, g, h, q, p, d):
"""NTRU签名算法的验证过程"""
k = sha256(m.encode()).digest()
k = [int.from_bytes(k[i:i+4], byteorder='big') for i in range(0, len(k), 4)]
f_poly = Poly(f, n)
h_poly = Poly(h, n)
c_poly = Poly(c, n)
t = ((Poly(k, n) + d * c_poly) * z.inv_mod_p(p)) % q
u = (t * h_poly) % q
r_prime = ((u - c_poly) * f_poly.inv_mod_p(p)) % q
return r_prime.coeffs == r
class Poly:
"""多项式类"""
def __init__(self, coeffs, n):
self.coeffs = coeffs
self.n = n
def __add__(self, other):
if isinstance(other, int):
other = Poly([other], self.n)
res_coeffs = [(self.coeffs[i] + other.coeffs[i]) % self.n for i in range(len(self.coeffs))]
return Poly(res_coeffs, self.n)
def __sub__(self, other):
if isinstance(other, int):
other = Poly([other], self.n)
res_coeffs = [(self.coeffs[i] - other.coeffs[i]) % self.n for i in range(len(self.coeffs))]
return Poly(res_coeffs, self.n)
def __mul__(self, other):
if isinstance(other, int):
other = Poly([other], self.n)
res_coeffs = [0] * (2 * self.n - 1)
for i in range(len(self.coeffs)):
for j in range(len(other.coeffs)):
res_coeffs[i+j] += self.coeffs[i] * other.coeffs[j]
res_coeffs[i+j] %= self.n
while len(res_coeffs) > self.n:
res_coeffs.pop()
return Poly(res_coeffs, self.n)
def inv_mod_p(self, p):
"""计算多项式在模p意义下的逆"""
a = self.coeffs[:]
b = [1] + [0] * (self.n - 1)
c = [0] * self.n + [1]
while True:
while a[-1] == 0:
a.pop()
while b[-1] == 0:
b.pop()
while c[-1] == 0:
c.pop()
if len(a) == 1 and a[0] == 1:
return Poly(b, self.n)
f = a[-1]
g = c[-1]
if len(a) == len(b):
f_inv = pow(f, p-2, p)
a = [(a[i] * f_inv) % p for i in range(len(a))]
b = [(b[i] * f_inv) % p for i in range(len(b))]
elif len(b) > len(a):
f_inv = pow(f, p-2, p)
d = [(g * b[i]) % p for i in range(len(b)-len(a))]
d += [(d[len(d)-1] + g*b[i+len(d)]) % p for i in range(len(a)-len(d)+1)]
d = [(a[i] - d[i]) % p for i in range(len(a))]
d = [(d[i] * f_inv) % p for i in range(len(d))]
b = [(b[i] * f_inv) % p for i in range(len(b))]
a, b = b, d
else:
f_inv = pow(g, p-2, p)
d = [(f * a[i]) % p for i in range(len(a)-len(b))]
d += [(d[len(d)-1] + f*a[i+len(d)]) % p for i in range(len(b)-len(d)+1)]
d = [(b[i] - d[i]) % p for i in range(len(b))]
d = [(d[i] * f_inv) % p for i in range(len(d))]
c, b = b, d
def __mod__(self, p):
"""多项式模p"""
res_coeffs = [self.coeffs[i] % p for i in range(len(self.coeffs))]
return Poly(res_coeffs, self.n)
```
其中,`ntru_gen_params`函数用于生成NTRU签名算法的参数,`ntru_keygen`函数用于生成NTRU签名算法的密钥,`ntru_sign`函数用于进行NTRU签名,`ntru_verify`函数用于验证NTRU签名。
`Poly`类实现了多项式的加减乘运算、逆元计算和模运算。在NTRU签名算法中,需要多次进行多项式的运算,因此实现一个多项式类可以方便地进行计算。
注意,在进行NTRU签名算法时,需要使用哈希函数对消息进行预处理,以保证签名的安全性。在代码中,我们使用了SHA256哈希函数进行预处理。另外,参数`d`用于对签名进行加密,可以使用随机数生成。
阅读全文