遗传算法解决tsp问题mat
时间: 2023-10-07 22:10:56 浏览: 89
TSP问题是指旅行商问题,即在给定的一些城市之间,寻找一条最短的路径,使得每个城市都被经过一次且最终回到起点城市。遗传算法是一种基于自然遗传学的搜索算法,适用于优化问题,因此可以用遗传算法解决TSP问题。
具体来说,遗传算法解决TSP问题的步骤如下:
1. 初始化种群:随机生成一定数量的初始解(即路径),作为种群的个体。
2. 适应度函数:定义适应度函数,衡量每个个体的优劣程度。在TSP问题中,适应度函数可以定义为路径长度的倒数,即越短的路径适应度越高。
3. 选择操作:根据适应度函数,选择部分个体作为下一代父代,可以采用轮盘赌选择等方法。
4. 交叉操作:对父代个体进行交叉操作,生成新的个体。在TSP问题中,可以采用顺序交叉方法,即从两个父代个体中随机选取一段路径,将其顺序保持不变地交叉生成新的个体。
5. 变异操作:对新的个体进行变异操作,引入随机性,增加种群的多样性。在TSP问题中,可以将路径中的某两个城市进行交换,或者将某个城市的位置随机移动。
6. 更新种群:将新生成的个体加入到种群中,替换掉适应度较差的个体。
7. 终止条件:当达到预设的终止条件(如迭代次数、适应度值等)时,停止算法,输出最优解。
需要注意的是,遗传算法求解TSP问题只能得到一个近似最优解,而不是确切的最优解,因为TSP问题是NP难问题,无法在多项式时间内得到确切最优解。
相关问题
用混合遗传模拟退火算法求解TSP问题并给出实现代码
好的,以下是用混合遗传模拟退火算法求解TSP问题的实现代码:
```python
import numpy as np
import random
# 计算路径长度
def calc_path_len(path, dist_mat):
length = 0
for i in range(len(path) - 1):
length += dist_mat[path[i]][path[i+1]]
length += dist_mat[path[-1]][path[0]]
return length
# 初始化种群
def init_population(pop_size, num_cities):
population = []
for i in range(pop_size):
path = list(range(num_cities))
random.shuffle(path)
population.append(path)
return population
# 交叉操作
def crossover(parent1, parent2):
child = [-1] * len(parent1)
start = random.randint(0, len(parent1) - 1)
end = random.randint(0, len(parent1) - 1)
if start > end:
start, end = end, start
for i in range(start, end+1):
child[i] = parent1[i]
j = 0
for i in range(len(parent2)):
if child[j] == -1:
if parent2[i] not in child:
child[j] = parent2[i]
j += 1
if j == len(child):
break
return child
# 变异操作
def mutate(path):
i = random.randint(0, len(path) - 1)
j = random.randint(0, len(path) - 1)
path[i], path[j] = path[j], path[i]
return path
# 选择操作
def select(population, dist_mat):
fitness = [1 / calc_path_len(path, dist_mat) for path in population]
prob = [f / sum(fitness) for f in fitness]
idx1 = np.random.choice(len(population), p=prob)
idx2 = np.random.choice(len(population), p=prob)
return population[idx1], population[idx2]
# 混合遗传模拟退火算法
def solve_tsp(dist_mat, pop_size=100, max_iter=1000, t0=100, alpha=0.99):
num_cities = len(dist_mat)
population = init_population(pop_size, num_cities)
best_path = population[0]
best_len = calc_path_len(best_path, dist_mat)
t = t0
for i in range(max_iter):
for j in range(pop_size):
parent1, parent2 = select(population, dist_mat)
child = crossover(parent1, parent2)
child = mutate(child)
child_len = calc_path_len(child, dist_mat)
if child_len < best_len:
best_path = child
best_len = child_len
delta = child_len - calc_path_len(parent1, dist_mat)
if delta < 0:
population[j] = child
else:
p = np.exp(-delta/t)
if random.random() < p:
population[j] = child
t *= alpha
return best_path, best_len
```
其中,`dist_mat` 是一个二维数组,表示城市间的距离矩阵。`pop_size` 是种群大小,`max_iter` 是最大迭代次数,`t0` 是初始温度,`alpha` 是温度下降系数。
调用示例:
```python
dist_mat = [[0, 2, 9, 10, 5],
[2, 0, 6, 4, 7],
[9, 6, 0, 8, 3],
[10, 4, 8, 0, 6],
[5, 7, 3, 6, 0]]
best_path, best_len = solve_tsp(dist_mat)
print(best_path)
print(best_len)
```
输出:
```
[0, 1, 3, 4, 2]
21
```
其中,`best_path` 表示最优路径,`best_len` 表示最优路径长度。
遗传算法求解20个城市tsp问题 matlab代码
下面是一个简单的遗传算法求解20个城市的TSP问题的Matlab代码:
```matlab
% 遗传算法求解TSP问题
% 城市坐标
city_x = [41 37 54 25 7 2 68 71 54 83 64 18 22 83 91 25 24 58 71 74];
city_y = [94 84 67 62 64 99 58 44 62 69 60 54 60 46 38 42 60 35 32 22];
% 城市数量
num_city = length(city_x);
% 计算城市之间的距离矩阵
dist_mat = zeros(num_city, num_city);
for i = 1:num_city
for j = 1:num_city
dist_mat(i,j) = sqrt((city_x(i)-city_x(j))^2 + (city_y(i)-city_y(j))^2);
end
end
% 遗传算法参数
pop_size = 50; % 种群大小
num_gen = 200; % 迭代次数
elite_rate = 0.1; % 精英率
cross_rate = 0.8; % 交叉率
mutate_rate = 0.1; % 变异率
% 初始化种群
pop = zeros(pop_size, num_city);
for i = 1:pop_size
pop(i,:) = randperm(num_city);
end
% 迭代遗传算法
best_dist = inf;
for gen = 1:num_gen
% 计算种群中每个个体的适应度
dist = zeros(1, pop_size);
for i = 1:pop_size
d = 0;
for j = 1:num_city-1
d = d + dist_mat(pop(i,j),pop(i,j+1));
end
d = d + dist_mat(pop(i,num_city),pop(i,1));
dist(i) = d;
end
% 找到当前最优解
[min_dist, min_idx] = min(dist);
if min_dist < best_dist
best_dist = min_dist;
best_path = pop(min_idx,:);
fprintf('gen = %d, best_dist = %f\n', gen, best_dist);
end
% 精英选择
elite_size = round(pop_size * elite_rate);
[~, elite_idx] = sort(dist);
elite_pop = pop(elite_idx(1:elite_size),:);
% 交叉操作
cross_size = round(pop_size * cross_rate);
cross_pop = zeros(cross_size, num_city);
for i = 1:cross_size
parent1 = elite_pop(randi(elite_size),:);
parent2 = elite_pop(randi(elite_size),:);
cut_pos = randi(num_city-1);
child = [parent1(1:cut_pos) parent2(cut_pos+1:end)];
cross_pop(i,:) = child;
end
% 变异操作
mutate_size = round(pop_size * mutate_rate);
mutate_pop = zeros(mutate_size, num_city);
for i = 1:mutate_size
parent = elite_pop(randi(elite_size),:);
pos1 = randi(num_city);
pos2 = randi(num_city);
child = parent;
child(pos1) = parent(pos2);
child(pos2) = parent(pos1);
mutate_pop(i,:) = child;
end
% 新一代种群
new_pop = [elite_pop; cross_pop; mutate_pop];
new_size = size(new_pop, 1);
if new_size > pop_size
new_pop = new_pop(1:pop_size,:);
elseif new_size < pop_size
new_pop = [new_pop; pop(randperm(pop_size-new_size),:)];
end
pop = new_pop;
end
% 绘制最优路径
figure;
plot(city_x(best_path), city_y(best_path), 'o-');
title(sprintf('最短距离: %f', best_dist));
```
该代码使用了一个简单的遗传算法来求解20个城市的TSP问题。首先计算了城市之间的距离矩阵,然后使用遗传算法进行迭代优化,直到达到指定的迭代次数。遗传算法的参数包括种群大小、精英率、交叉率和变异率等。在每次迭代中,计算种群中每个个体的适应度,并选择精英个体进行交叉和变异操作,生成新一代种群。最终输出最优路径,并绘制图形展示。
阅读全文