初始学习率为0.01,batch_size为16,总epoch为200。网络输入尺寸为640×640,优化器选择SGD,学习率调整策略为余弦退火算法,用余弦函数动态降低学习率,Mixup为0.3,IoU阈值设置为0.5。
时间: 2024-05-23 21:16:20 浏览: 138
这是一个基于SGD优化器、余弦退火学习率调整策略、Mixup数据增强和0.5的IoU阈值的目标检测模型。输入尺寸为640×640,batch_size为16,总epoch为200,初始学习率为0.01。其中,Mixup数据增强是一种数据增强方法,它可以在训练过程中将两张不同的图像进行混合,从而增加数据集的多样性,提高模型的泛化能力。而IoU阈值则是指在目标检测中,当预测框与真实框之间的IoU值大于该阈值时,才认为该预测框正确。这些设置可以根据具体情况进行调整和优化,以达到更好的检测效果。
相关问题
解释if __name__ == "__main__": Cuda = True distributed = False sync_bn = False fp16 = False classes_path = 'model_data/cls_classes.txt' input_shape = [224, 224] backbone = "mobilenetv2" pretrained = True model_path = "" Init_Epoch = 0 Freeze_Epoch = 50 Freeze_batch_size = 32 UnFreeze_Epoch = 200 Unfreeze_batch_size = 32 Freeze_Train = True Init_lr = 1e-2 Min_lr = Init_lr * 0.01 optimizer_type = "sgd" momentum = 0.9 weight_decay = 5e-4 lr_decay_type = "cos" save_period = 10 save_dir = 'logs' num_workers = 4 train_annotation_path = "cls_train.txt" test_annotation_path = 'cls_test.txt'
`if __name__ == "__main__":` 是 Python 中的一个约定,表示只有在当前脚本被直接执行时才会运行以下代码块,而当脚本作为模块导入时,这些代码不会运行。这个代码块中定义了一些变量和参数,包括是否使用 CUDA 加速、是否使用分布式训练、是否使用同步BN等。其中,classes_path 定义了存储分类标签的文件路径,input_shape 定义了输入图像的大小,backbone 定义了使用的网络模型,pretrained 定义了是否使用预训练模型等。另外还定义了一些训练参数,如学习率、优化器类型、权重衰减等。最后还定义了训练数据和测试数据的标注文件路径。这些参数的值可以在训练模型时进行调整。
function [beta, b, loss_history] = linear_regression(X, y, batch_size, lr, lr_decay, epochs, lambda) %输入参数: %X:训练数据的特征矩阵,大小为 m x n,其中 m 是样本数,n 是特征数。 %y:训练数据的目标值,大小为 m x 1。 %batch_size:mini-batch 的大小。 %lr:学习率。 %lr_decay:学习率衰减系数。 %epochs:迭代次数。 %lambda:正则项系数。 %输出参数: %beta:学习到的模型参数,大小为 n x 1。 %b:学习到的模型偏差,标量。 %loss_history:损失函数的历史记录,大小为 epochs x 1。 % 对输入数据进行标准化 [m, n] = size(X); mu = mean(X); sigma = std(X); X = (X - mu) ./ sigma; % 初始化模型参数 beta = randn(n, 1); b = randn(); % 设置损失函数的历史记录 loss_history = zeros(epochs, 1); % 进行 mini-batch SGD 迭代 for epoch = 1:epochs % 随机打乱样本顺序 idx = randperm(m); X = X(idx, :); y = y(idx); % 迭代 mini-batch for i = 1:batch_size:m % 计算当前 mini-batch 的梯度 X_batch = X(i:min(i+batch_size-1, m), :); y_batch = y(i:min(i+batch_size-1, m)); grad_theta = (X_batch' * (X_batch * beta + b - y_batch)) / batch_size + lambda * beta; grad_b = sum(X_batch * beta + b - y_batch) / batch_size; % 更新参数 lr = lr / (1 + lr_decay * epoch); % 学习率衰减 beta = beta - lr * grad_theta; b = b - lr * grad_b; end % 计算当前损失函数的值 loss = sum((X * beta + b - y) .^ 2) / (2 * m) + lambda * sum(beta .^ 2) / 2; loss_history(epoch) = loss; end % 绘制损失函数随迭代次数变化的曲线 plot(1:epochs, loss_history); xlabel('Epochs'); ylabel('Loss'); title('Loss vs. Epochs') end将此代码中标准化还原
代码中的标准化还原如下所示:
```matlab
X = X .* sigma + mu;
```
将此代码添加到函数中,使其能够在训练完成后将标准化后的数据还原为原始数据。
阅读全文