初始学习率为0.01,batch_size为16,总epoch为200。网络输入尺寸为640×640,优化器选择SGD,学习率调整策略为余弦退火算法,用余弦函数动态降低学习率,Mixup为0.3,IoU阈值设置为0.5。

时间: 2024-05-23 10:16:20 浏览: 11
这是一个基于SGD优化器、余弦退火学习率调整策略、Mixup数据增强和0.5的IoU阈值的目标检测模型。输入尺寸为640×640,batch_size为16,总epoch为200,初始学习率为0.01。其中,Mixup数据增强是一种数据增强方法,它可以在训练过程中将两张不同的图像进行混合,从而增加数据集的多样性,提高模型的泛化能力。而IoU阈值则是指在目标检测中,当预测框与真实框之间的IoU值大于该阈值时,才认为该预测框正确。这些设置可以根据具体情况进行调整和优化,以达到更好的检测效果。
相关问题

梯度阈值设置为 1。指定初始学习率 0.01,在 125 轮训练后通过乘以因子 0.2 来降低学习率

梯度阈值设置为1意味着,如果梯度的范数超过1,则会被截断为1,以避免梯度爆炸。 指定初始学习率为0.01意味着,在每次更新模型参数时,将使用0.01作为步长的大小。在进行125轮训练后,您可以将学习率乘以因子0.2来降低学习率,这是一种常见的学习率衰减策略。这意味着在每次更新模型参数时,将使用当前学习率的0.2倍作为步长的大小。 具体的训练代码可能如下所示: ```python import torch.optim as optim from torch.optim.lr_scheduler import StepLR # 定义优化器和学习率衰减策略 optimizer = optim.SGD(model.parameters(), lr=0.01) scheduler = StepLR(optimizer, step_size=125, gamma=0.2) # 在训练循环中使用学习率衰减策略 for epoch in range(num_epochs): for batch_idx, (data, target) in enumerate(train_loader): # 清零梯度并计算损失 optimizer.zero_grad() output = model(data) loss = criterion(output, target) # 反向传播和参数更新 loss.backward() optimizer.step() # 学习率衰减 scheduler.step() ``` 在训练循环中,我们首先定义了一个优化器`SGD`,并将学习率设置为0.01。然后,我们定义了一个学习率衰减策略`StepLR`,其中`step_size=125`表示在125轮之后开始衰减,`gamma=0.2`表示将学习率乘以0.2。 在每次训练迭代中,我们首先将优化器的梯度清零,并计算当前batch的损失。然后,我们进行反向传播和参数更新。最后,我们使用`scheduler.step()`来更新学习率。

解释if __name__ == "__main__": Cuda = True distributed = False sync_bn = False fp16 = False classes_path = 'model_data/cls_classes.txt' input_shape = [224, 224] backbone = "mobilenetv2" pretrained = True model_path = "" Init_Epoch = 0 Freeze_Epoch = 50 Freeze_batch_size = 32 UnFreeze_Epoch = 200 Unfreeze_batch_size = 32 Freeze_Train = True Init_lr = 1e-2 Min_lr = Init_lr * 0.01 optimizer_type = "sgd" momentum = 0.9 weight_decay = 5e-4 lr_decay_type = "cos" save_period = 10 save_dir = 'logs' num_workers = 4 train_annotation_path = "cls_train.txt" test_annotation_path = 'cls_test.txt'

`if __name__ == "__main__":` 是 Python 中的一个约定,表示只有在当前脚本被直接执行时才会运行以下代码块,而当脚本作为模块导入时,这些代码不会运行。这个代码块中定义了一些变量和参数,包括是否使用 CUDA 加速、是否使用分布式训练、是否使用同步BN等。其中,classes_path 定义了存储分类标签的文件路径,input_shape 定义了输入图像的大小,backbone 定义了使用的网络模型,pretrained 定义了是否使用预训练模型等。另外还定义了一些训练参数,如学习率、优化器类型、权重衰减等。最后还定义了训练数据和测试数据的标注文件路径。这些参数的值可以在训练模型时进行调整。

相关推荐

import tensorflow as tf from tensorflow.keras import datasets, layers, models, optimizers from tensorflow.keras.preprocessing import image_dataset_from_directory import matplotlib.pyplot as plt # 定义数据集路径 data_dir = r'F:\Pycham\project\data\FMD' # 定义图像大小和批处理大小 image_size = (224, 224) batch_size = 32 # 从目录中加载训练数据集 train_ds = image_dataset_from_directory( data_dir, validation_split=0.2, subset="training", seed=123, image_size=image_size, batch_size=batch_size) # 从目录中加载验证数据集 val_ds = image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=image_size, batch_size=batch_size) # 构建卷积神经网络模型 model = models.Sequential() model.add(layers.experimental.preprocessing.Rescaling(1./255, input_shape=(image_size[0], image_size[1], 3))) model.add(layers.Conv2D(32, (3, 3), activation='selu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='selu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='selu')) model.add(layers.Conv2D(128, (3, 3), activation='selu')) model.add(layers.MaxPooling2D((2, 2))) # 添加全连接层 model.add(layers.Flatten()) model.add(layers.Dense(128, activation='selu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(64, activation='selu')) model.add(layers.Dense(10)) # 编译模型,使用 SGD 优化器和 Categorical Crossentropy 损失函数 model.compile(optimizer=optimizers.SGD(learning_rate=0.01, momentum=0.9), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # 训练模型,共训练 20 轮 history = model.fit(train_ds, epochs=5, validation_data=val_ds) # 绘制训练过程中的准确率和损失曲线 plt.plot(history.history['accuracy'], label='accuracy') plt.plot(history.history['val_accuracy'], label = 'val_accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.ylim([0.5, 1]) plt.legend(loc='lower right') plt.show() # 在测试集上评估模型准确率 test_loss, test_acc = model.evaluate(val_ds) print(f'测试准确率: {test_acc}')上述代码得出的准确率仅为0.5,请你通过修改学习率等方式修改代码,假设数据集路径为F:\Pycham\project\data\FMD

function [beta, b, loss_history] = linear_regression(X, y, batch_size, lr, lr_decay, epochs, lambda) %输入参数: %X:训练数据的特征矩阵,大小为 m x n,其中 m 是样本数,n 是特征数。 %y:训练数据的目标值,大小为 m x 1。 %batch_size:mini-batch 的大小。 %lr:学习率。 %lr_decay:学习率衰减系数。 %epochs:迭代次数。 %lambda:正则项系数。 %输出参数: %beta:学习到的模型参数,大小为 n x 1。 %b:学习到的模型偏差,标量。 %loss_history:损失函数的历史记录,大小为 epochs x 1。 % 对输入数据进行标准化 [m, n] = size(X); mu = mean(X); sigma = std(X); X = (X - mu) ./ sigma; % 初始化模型参数 beta = randn(n, 1); b = randn(); % 设置损失函数的历史记录 loss_history = zeros(epochs, 1); % 进行 mini-batch SGD 迭代 for epoch = 1:epochs % 随机打乱样本顺序 idx = randperm(m); X = X(idx, :); y = y(idx); % 迭代 mini-batch for i = 1:batch_size:m % 计算当前 mini-batch 的梯度 X_batch = X(i:min(i+batch_size-1, m), :); y_batch = y(i:min(i+batch_size-1, m)); grad_theta = (X_batch' * (X_batch * beta + b - y_batch)) / batch_size + lambda * beta; grad_b = sum(X_batch * beta + b - y_batch) / batch_size; % 更新参数 lr = lr / (1 + lr_decay * epoch); % 学习率衰减 beta = beta - lr * grad_theta; b = b - lr * grad_b; end % 计算当前损失函数的值 loss = sum((X * beta + b - y) .^ 2) / (2 * m) + lambda * sum(beta .^ 2) / 2; loss_history(epoch) = loss; end % 绘制损失函数随迭代次数变化的曲线 plot(1:epochs, loss_history); xlabel('Epochs'); ylabel('Loss'); title('Loss vs. Epochs') end将此代码中标准化还原

最新推荐

recommend-type

python实现随机梯度下降(SGD)

随机梯度下降(Stochastic Gradient Descent,SGD)是一种常用的优化算法,尤其在机器学习领域,特别是训练神经网络时,用于最小化损失函数。它与传统的梯度下降法不同,因为每次迭代不是基于整个训练集的梯度,而是...
recommend-type

keras实现VGG16 CIFAR10数据集方式

通过监视训练过程中的损失和准确率,我们可以调整超参数,如学习率、正则化强度和Dropout比例,以优化模型性能。 总结一下,本篇文章介绍了如何在Keras中使用VGG16架构来解决CIFAR10数据集的分类任务。VGG16模型因...
recommend-type

地县级城市建设道路清扫保洁面积 道路清扫保洁面积道路机械化清扫保洁面积 省份 城市.xlsx

数据含省份、行政区划级别(细分省级、地级市、县级市)两个变量,便于多个角度的筛选与应用 数据年度:2002-2022 数据范围:全693个地级市、县级市、直辖市城市,含各省级的汇总tongji数据 数据文件包原始数据(由于多年度指标不同存在缺失值)、线性插值、回归填补三个版本,提供您参考使用。 其中,回归填补无缺失值。 填补说明: 线性插值。利用数据的线性趋势,对各年份中间的缺失部分进行填充,得到线性插值版数据,这也是学者最常用的插值方式。 回归填补。基于ARIMA模型,利用同一地区的时间序列数据,对缺失值进行预测填补。 包含的主要城市: 通州 石家庄 藁城 鹿泉 辛集 晋州 新乐 唐山 开平 遵化 迁安 秦皇岛 邯郸 武安 邢台 南宫 沙河 保定 涿州 定州 安国 高碑店 张家口 承德 沧州 泊头 任丘 黄骅 河间 廊坊 霸州 三河 衡水 冀州 深州 太原 古交 大同 阳泉 长治 潞城 晋城 高平 朔州 晋中 介休 运城 永济 .... 等693个地级市、县级市,含省级汇总 主要指标:
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Python字符串为空判断的常见问题解答:解决常见疑惑

![字符串为空判断](https://img-blog.csdnimg.cn/20210620130654176.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl8zOTQ0NTExNg==,size_16,color_FFFFFF,t_70) # 1. Python字符串为空判断的必要性 在Python编程中,字符串为空判断是至关重要的,它可以帮助我们处理各种场景,例如: - 数据验证:确保用户输入或从数据库获取的