matplotlib.pyplot.bar参数百分比

时间: 2023-10-25 22:14:27 浏览: 145
如果您想在 matplotlib.pyplot.bar 中使用百分比,可以将 y 值除以总和,并使用 yticks 和 yticklabels 来设置标签。以下是一个例子: ```python import matplotlib.pyplot as plt # 一些示例数据 values = [25, 35, 20, 10, 10] # 计算总和 total = sum(values) # 将值转换为百分比 percentages = [100 * value / total for value in values] # 绘制条形图 plt.bar(range(len(values)), percentages) # 设置刻度标签 plt.yticks(range(0, 110, 10), ['{}%'.format(x) for x in range(0, 110, 10)]) plt.show() ``` 在上面的代码中,我们首先计算了值的总和,然后将每个值转换为百分比,并使用 `plt.bar()` 绘制了条形图。最后,我们使用 `plt.yticks()` 设置了刻度标签,其中第一个参数是刻度位置,第二个参数是对应的标签列表。我们使用列表推导式来生成标签列表,其中每个标签都是一个字符串,包含百分比值。
相关问题

对文件profit.xls中的盈利数据做出 帕累托图(帕累托图的定义可百度),用matplotlib.pyplot作图,写出代码。

帕累托图是一种图形工具,用于显示项目按照重要性排序的比例分布。在这种情况下,我们将根据利润数据制作一个帕累托图,以展示数据集中盈利最高的部分占比情况。这里是一个简单的Python代码示例,使用matplotlib.pyplot库: ```python import pandas as pd import matplotlib.pyplot as plt # 读取profit.xls文件中的数据 data = pd.read_excel('profit.xls') # 假设利润列名为'Profit' profits = data['Profit'] # 计算累积频率(百分比) cumulative_profits = profits.value_counts().sort_values(ascending=False).cumsum() / profits.sum() # 创建帕累托图 plt.figure(figsize=(10, 6)) plt.plot(cumulative_profits.index, cumulative_profits, marker='o') plt.xlabel('利润类别') plt.ylabel('累计比例') plt.title('利润数据的帕累托图') plt.grid(True) plt.xticks(rotation=45) # 根据需要调整x轴标签角度 plt.fill_between(cumulative_profits.index, 0, cumulative_profits, alpha=0.5) # 阴影部分代表累积比例 # 绘制直方图,与帕累托图一起展示 plt.bar(profits.index, profits, color='skyblue', align='center', alpha=0.5, edgecolor='black') plt.legend(['累积比例', '利润分布'], loc='upper right') plt.show()

import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=0.5) t=np.arange(0.0,2.0,0.1) s=np.sin(t*np.pi) plt.subplot(2,2,1) #要生成两行两列,这是第一个图 import numpy as np import matplotlib.pyplot as plt x = np.arange(1,13) y1 = np.array([53673, 57571, 58905, 55239, 49661, 49510, 49163, 57311, 59187, 60074, 57109, 52885]) plt.plot(x, y1) plt.title('近13天登录人数') plt.show() plt.subplot(2,2,2) #两行两列,这是第二个图 import numpy as np import matplotlib.pyplot as plt plt.subplots_adjust(top=0.85) x = np.arange(12) y = np.array([70887, 64957, 62508, 66471, 54972, 46245, 64083, 67090, 64991, 88504, 79404, 68253,]) bar_width = 0.3 plt.bar(x, y, tick_label=['1月', '2月', '3月', '4月', '5月', '6月', '7月', "8月", "9月", "10月", '11月', '12月'],width=bar_width) plt.title('近12个月人数') plt.show() plt.subplot(2,2,3)#两行两列,这是第三个图 import matplotlib.pyplot as plt plt.subplots_adjust(top=0.85) plt.style.use('fivethirtyeight') languages = ['steam', 'ubisoft'] popularity = [78,22] plt.pie(popularity) plt.tight_layout() plt.pie(popularity, labels=languages, autopct='%1.1f%%') plt.title('游戏平台登录占比') plt.subplot(2,2,4)#两行两列,这是第四个图 import numpy as np from matplotlib import pyplot as plt ages_x = [1, 2, 3, 4, 5, ] x_indexes = np.arange(len(ages_x)) width = 0.33 dev_y = [64050, 65168, 75588, 75590, 60097] py_dev_y = [57809, 56101, 70605, 63437, 56756] plt.bar(x_indexes, dev_y, width=width, label="2022") plt.bar(x_indexes + width, py_dev_y, width=width, label="2023") plt.xlabel("月份") plt.ylabel("平均在线人数") plt.title("2022和2023一到五月在线人数对比") plt.legend() plt.xticks(ticks = x_indexes, labels = ages_x) plt.show()

你刚才的代码中,第三个子图中的饼图有一些问题。虽然你使用了pie函数绘制了饼图,但是没有正确地添加标签和百分比。正确的代码应该是这样的: ```python plt.subplot(2,2,3) plt.subplots_adjust(top=0.85) plt.style.use('fivethirtyeight') languages = ['steam', 'ubisoft'] popularity = [78,22] plt.pie(popularity, labels=languages, autopct='%1.1f%%') plt.title('游戏平台登录占比') plt.show() ``` 这样做可以让饼图正确地显示游戏平台的登录占比,并显示出每个部分所占的百分比。
阅读全文

相关推荐

最新推荐

recommend-type

利用Python+matplotlib对泰坦尼克号进行数据分析

在Python中,我们使用`matplotlib.pyplot`作为主要的绘图库,`seaborn`则是用于更高级的统计图形展示。在这个例子中,我们使用seaborn的`load_dataset`函数来加载泰坦尼克号的数据集,它存储了乘客的详细信息,如...
recommend-type

Python_matplotlib库绘制02(柱状图,饼状图)

import matplotlib.pyplot as plt num_list = [1, 5, 6.5, 8, 11] plt.bar(range(len(num_list)), num_list) plt.title("zztu") plt.xlabel("x") plt.ylabel("y") plt.show() ``` 这个例子展示了如何创建一个基本的...
recommend-type

python画柱状图--不同颜色并显示数值的方法

在matplotlib中,`pyplot.bar()`函数是用于绘制柱状图的关键。这个函数接受多个参数来定制你的图形。以下是一些关键参数的说明: 1. `left`: 这个参数指定了每个柱子左边缘的X坐标。 2. `height`: 定义了每个柱子的...
recommend-type

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件.zip

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件如果权重无法下载,则可能是存储库超出了 git lfs 配额。请从没有此限制的bitbucket 存储库中提取。此存储库包含 yolov3 权重以及配置文件。该模型在Kaggle Open Images 挑战赛的私有 LB 上实现了 42.407 的 mAP 。为了使用这些权重,您需要安装darknet 。您可以在项目网站上阅读更多相关信息。有多种方法可以使用 darknet 进行检测。一种方法是创建一个 txt 文件,其中包含要运行检测的图像的路径,并从包含的 yolo.data 文件中指向该文件。运行检测的命令(假设 darknet 安装在该 repo 的根目录中)是 ./darknet/darknet detector valid yolo.data yolov3-spp.cfg yolov3-spp_final.weights我分享这些权重是因为它们可能对某些人有用。如果您遇到任何问题,我无法提供任何支持。Yolo 不太容易排除故障,如果您遇到段错误,则需要您自己找出问题所
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依