用python写一个svm分类模型代码
时间: 2024-05-16 12:16:12 浏览: 117
python SVM 线性分类模型的实现
好的,以下是一个简单的 SVM 分类模型的 Python 代码示例:
```python
from sklearn import svm
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载数据集
X, y = load_data()
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 定义 SVM 模型
clf = svm.SVC(kernel='linear')
# 训练模型
clf.fit(X_train, y_train)
# 预测测试集结果
y_pred = clf.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```
在这个示例中,我们首先使用 `load_data()` 函数加载数据集,然后使用 `train_test_split()` 函数将数据集划分为训练集和测试集(测试集占总数据集的20%)。接着,我们使用 `svm.SVC()` 函数定义一个线性 SVM 分类器,并使用训练数据拟合模型。最后,我们使用模型对测试集进行预测,并计算测试集的准确率。
当然,这只是一个简单的示例,实际情况中需要根据具体的数据集和问题进行调整和优化。
阅读全文