from sklearn.neighbors import KNeighborsClassifier knn_model = KNeighborsClassifier() knn_model.fit(X_train_std,y_train) print(knn_model.score(X_train_std,y_train)) print(knn_model.score(X_test_std,y_test)) from sklearn.metrics import classification_report, confusion_matrix y_pred =knn_model.predict(X_test) print(classification_report(y_test,y_pred)) cm = confusion_matrix(y_test, y_pred) plt.figure(figsize = (8,8)) sns.heatmap(cm,cmap= "Blues", linecolor = 'black' , linewidth = 1 , annot = True, fmt='' , xticklabels = ['A','B','C','D'] , yticklabels = ['A','B','C','D']) plt.xlabel("Predicted") plt.ylabel("Actual") plt.show() from sklearn.neighbors import KNeighborsClassifier knn_model = KNeighborsClassifier() prams ={ 'n_neighbors':[13,15,18,22]} gd_knn= GridSearchCV(knn_model , param_grid=prams, n_jobs=-1 ,cv=10) gd_knn.fit(X_train_std , y_train) print(gd_knn.best_estimator_) tuned_knn = gd_knn.best_estimator_ print(f'Train : {tuned_knn.score(X_train_std, y_train)}') model_eval(tuned_knn,X_test_std,y_test)

时间: 2024-04-02 14:35:54 浏览: 16
这段代码使用了scikit-learn库中的KNeighborsClassifier类来创建一个K近邻分类器,并使用fit方法对标准化后的训练数据进行拟合。接着,使用score方法计算了模型在训练集和测试集上的准确率,并将其打印输出。之后,使用classification_report和confusion_matrix方法计算并打印了模型的分类报告和混淆矩阵。 随后,使用GridSearchCV方法对K近邻分类器进行调参,尝试不同的n_neighbors参数组合,以求得最优的模型。最后,使用tuned_knn.score方法计算了调参后模型在训练集上的准确率,并使用model_eval方法计算并打印了模型在测试集上的性能表现。
相关问题

from sklearn.neighbors import KNeighborsClassifier knn_model = KNeighborsClassifier() knn_model.fit(X_train_std,y_train) print(knn_model.score(X_train_std,y_train)) print(knn_model.score(X_test_std,y_test)) from sklearn.metrics import classification_report, confusion_matrix y_pred =knn_model.predict(X_test) print(classification_report(y_test,y_pred))分行解释代码

这段代码主要是使用 scikit-learn 库中的 KNeighborsClassifier 类构建并训练了一个 k 近邻分类器模型,并对模型进行了评估。 - `from sklearn.neighbors import KNeighborsClassifier`:导入 scikit-learn 库中的 KNeighborsClassifier 类,用于构建 k 近邻分类器模型。 - `knn_model = KNeighborsClassifier()`:创建一个 KNeighborsClassifier 对象,用于训练 k 近邻分类器模型。 - `knn_model.fit(X_train_std, y_train)`:使用训练数据 X_train_std 和标签数据 y_train 来训练 k 近邻分类器模型。 - `print(knn_model.score(X_train_std, y_train))`:打印训练数据上的分类准确度得分。 - `print(knn_model.score(X_test_std, y_test))`:打印测试数据上的分类准确度得分。 - `from sklearn.metrics import classification_report, confusion_matrix`:导入 scikit-learn 库中的 classification_report 和 confusion_matrix 函数,用于评估分类器模型的性能。 - `y_pred = knn_model.predict(X_test)`:使用训练好的 k 近邻分类器模型对测试数据 X_test 做出预测。 - `print(classification_report(y_test, y_pred))`:打印分类器模型在测试数据上的分类报告,包括精确率、召回率、F1 值等指标。

from sklearn.neighbors import KNeighborsClassifier knn_model = KNeighborsClassifier() prams ={ 'n_neighbors':[13,15,18,22]} gd_knn= GridSearchCV(knn_model , param_grid=prams, n_jobs=-1 ,cv=10) gd_knn.fit(X_train_std , y_train) print(gd_knn.best_estimator_)

这段代码使用了scikit-learn库中的KNeighborsClassifier模型进行了K近邻算法分类,并利用GridSearchCV函数进行了网格搜索来优化模型的超参数。具体解释如下: - `from sklearn.neighbors import KNeighborsClassifier`: 从sklearn.neighbors模块中导入KNeighborsClassifier类。 - `knn_model = KNeighborsClassifier()`: 创建一个KNeighborsClassifier对象,即K近邻分类器的模型。 - `prams ={ 'n_neighbors':[13,15,18,22]}`: 设置超参数的取值范围,这里指定了n_neighbors这个超参数的取值范围为13、15、18和22。 - `gd_knn= GridSearchCV(knn_model , param_grid=prams, n_jobs=-1 ,cv=10)`: 创建一个GridSearchCV对象,即进行网格搜索的对象。其中knn_model是要进行超参数优化的模型对象,param_grid是超参数取值范围,n_jobs指定了并行运算的数量,cv指定了交叉验证的折数。 - `gd_knn.fit(X_train_std , y_train)`: 在训练集上拟合模型,其中X_train_std是经过标准化后的训练集特征矩阵,y_train是训练集标签向量。 - `print(gd_knn.best_estimator_)`: 输出最佳的模型参数,即在网格搜索中得分最高的模型的参数。

相关推荐

from sklearn.neighbors import KNeighborsClassifier #导入 scikit-learn 库中的 KNeighborsClassifier 类,用于构建 k 近邻分类器模型 knn_model = KNeighborsClassifier() #创建一个 KNeighborsClassifier 对象,用于训练 k 近邻分类器模型。 knn_model.fit(X_train_std, y_train) #使用训练数据 X_train_std 和标签数据 y_train 来训练 k 近邻分类器模型。 print(knn_model.score(X_train_std, y_train)) #打印训练数据上的分类准确度得分。 print(knn_model.score(X_test_std, y_test)) #打印测试数据上的分类准确度得分。 from sklearn.metrics import classification_report, confusion_matrix #导入 scikit-learn 库中的 classification_report 和 confusion_matrix 函数,用于评估分类器模型的性能。 y_pred = knn_model.predict(X_test) #使用训练好的 k 近邻分类器模型对测试数据 X_test 做出预测。 print(classification_report(y_test, y_pred)) from sklearn.metrics import classification_report, confusion_matrix #导入 scikit-learn 库中的 classification_report 和 confusion_matrix 函数,用于评估分类器模型的性能。 y_pred = knn_model.predict(X_test) #使用训练好的 k 近邻分类器模型对测试数据 X_test 做出预测,将预测结果保存在 y_pred 变量中。 print(classification_report(y_test, y_pred)) cm = confusion_matrix(y_test, y_pred) #使用 confusion_matrix 函数计算分类器模型在测试数据上的混淆矩阵,并将其保存在 cm 变量中。其中,y_test 是测试数据的真实标签,y_pred 是分类器模型预测的标签。 plt.figure(figsize = (8,8)) #创建一个大小为 8x8 的图形窗口,用于展示可视化结果 sns.heatmap() #使用 seaborn 库中的 heatmap 函数绘制混淆矩阵的热力图 plt.xlabel("Predicted") #指定 x 轴的标签为“Predicted” plt.ylabel("Actual") #指定 y 轴的标签为“Actual” plt.show() 绘制热力图并进行解释

最新推荐

recommend-type

单片机C语言Proteus仿真实例可演奏的电子琴

单片机C语言Proteus仿真实例可演奏的电子琴提取方式是百度网盘分享地址
recommend-type

电力概预算软件.zip

电力概预算软件
recommend-type

setuptools-64.0.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

爱你老妈(HTML文件)母亲节快乐

母亲节祝福html源码 很简单的代码,随机生成背景
recommend-type

Python源码-三门问题的验证.py

Python源码-三门问题的验证
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。