ds18b20通过stm32串口通信,怎么打印

时间: 2023-03-31 17:01:36 浏览: 83
您可以使用串口调试助手或者其他串口通信软件,将ds18b20采集到的数据通过stm32的串口发送出去,然后在串口调试助手或者其他串口通信软件中查看接收到的数据。具体的实现方法可以参考stm32的串口通信相关的资料和代码示例。
相关问题

ds18b20与STM32通信代码

### 回答1: 好的,下面是使用STM32与DS18B20进行通信的示例代码: 首先,需要使用STM32的GPIO口将DS18B20的DQ引脚连接到STM32上,然后在STM32的代码中使用OneWire协议与DS18B20通信,获取温度数据。 以下是示例代码: ``` #include "stm32f4xx.h" #define DS18B20_GPIO_PORT GPIOA #define DS18B20_GPIO_PIN GPIO_Pin_0 void Delay_us(uint32_t us) { uint32_t count = us * (SystemCoreClock/1000000U); while(count--); } void DS18B20_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = DS18B20_GPIO_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_OD; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(DS18B20_GPIO_PORT, &GPIO_InitStructure); GPIO_SetBits(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN); Delay_us(10); GPIO_ResetBits(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN); Delay_us(480); GPIO_SetBits(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN); Delay_us(80); } void DS18B20_WriteByte(uint8_t data) { uint8_t i; for (i = 0; i < 8; i++) { GPIO_ResetBits(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN); Delay_us(2); GPIO_WriteBit(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN, (BitAction)(data & 0x01)); Delay_us(60); GPIO_SetBits(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN); Delay_us(2); data >>= 1; } } uint8_t DS18B20_ReadByte(void) { uint8_t i; uint8_t byte = 0; for (i = 0; i < 8; i++) { GPIO_ResetBits(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN); Delay_us(2); GPIO_SetBits(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN); Delay_us(8); byte >>= 1; if (GPIO_ReadInputDataBit(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN)) byte |= 0x80; Delay_us(120); } return byte; } float DS18B20_ReadTemperature(void) { uint8_t i; uint8_t temp[2]; float temperature; DS18B20_Init(); DS18B20_WriteByte(0xCC); DS18B20_WriteByte(0x44); DS18B20_Init(); DS18B20_WriteByte(0xCC); DS18B20_WriteByte(0xBE); for (i = 0; i < 2; i++) { temp[i] = DS18B20_ReadByte(); } temperature = (float)(((temp[1] << 8) | temp[0]) * 0.0625); return temperature; } int main(void) { float temperature ### 回答2: DS18B20是一款数字温度传感器,常用于测量环境温度。STM32是STMicroelectronics公司推出的一类32位微控制器。 要与DS18B20传感器进行通信,需要使用单总线协议。以下是使用STM32与DS18B20通信的代码示例: 首先,需要定义引脚连接DS18B20传感器的引脚。假设数据线连接到STM32的GPIOA的第0号引脚,需要在代码中进行如下定义: #define DQ_GPIO_Port GPIOA #define DQ_Pin GPIO_PIN_0 接下来,需要定义几个常用的函数,用于DS18B20传感器的初始化和读取温度数据。这些函数包括: 1. 向DS18B20传感器发送复位信号的函数: void DS18B20_Reset(void) { HAL_GPIO_WritePin(DQ_GPIO_Port, DQ_Pin, GPIO_PIN_RESET); // 拉低DQ引脚 HAL_Delay(480); // 延时480微秒 HAL_GPIO_WritePin(DQ_GPIO_Port, DQ_Pin, GPIO_PIN_SET); // 拉高DQ引脚 HAL_Delay(60); // 延时60微秒 } 2. 从DS18B20传感器读取一个bit数据的函数: static uint8_t DS18B20_ReadBit(void) { uint8_t bit = 0; HAL_GPIO_WritePin(DQ_GPIO_Port, DQ_Pin, GPIO_PIN_RESET); // 拉低DQ引脚 HAL_Delay(2); // 延时2微秒 HAL_GPIO_WritePin(DQ_GPIO_Port, DQ_Pin, GPIO_PIN_SET); // 拉高DQ引脚 HAL_Delay(10); // 延时10微秒 if(HAL_GPIO_ReadPin(DQ_GPIO_Port, DQ_Pin)) // 判断DQ引脚高低电平 { bit = 1; } HAL_Delay(50); // 延时50微秒 return bit; } 3. 从DS18B20传感器读取一个字节数据的函数: static uint8_t DS18B20_ReadByte(void) { uint8_t byte = 0; for(uint8_t i = 0; i < 8; i++) { byte |= DS18B20_ReadBit() << i; // 读取8个bit,并根据bit的值确定字节的对应位 } return byte; } 4. 向DS18B20传感器发送一个bit数据的函数: static void DS18B20_WriteBit(uint8_t bit) { HAL_GPIO_WritePin(DQ_GPIO_Port, DQ_Pin, GPIO_PIN_RESET); // 拉低DQ引脚 HAL_Delay(2); // 延时2微秒 if(bit) { HAL_GPIO_WritePin(DQ_GPIO_Port, DQ_Pin, GPIO_PIN_SET); // 拉高DQ引脚 } else { HAL_GPIO_WritePin(DQ_GPIO_Port, DQ_Pin, GPIO_PIN_RESET); // 拉低DQ引脚 } HAL_Delay(60); // 延时60微秒 } 5. 向DS18B20传感器发送一个字节数据的函数: static void DS18B20_WriteByte(uint8_t byte) { for(uint8_t i = 0; i < 8; i++) { DS18B20_WriteBit(byte & 0x01); // 依次发送byte的每一位bit byte >>= 1; // 右移一位 } } 最后,在主函数中使用上述函数来初始化DS18B20传感器并读取温度数据: int main(void) { // 初始化GPIO DS18B20_Reset(); // 复位DS18B20传感器 HAL_Delay(1); // 延时1毫秒 DS18B20_WriteByte(0xCC); // 跳过ROM操作,直接进入温度转换模式 DS18B20_WriteByte(0x44); // 启动温度转换 // 等待温度转换完成 while(!DS18B20_ReadBit()){} DS18B20_Reset(); // 复位DS18B20传感器 HAL_Delay(1); // 延时1毫秒 DS18B20_WriteByte(0xCC); // 跳过ROM操作,直接进入读取温度模式 DS18B20_WriteByte(0xBE); // 读取温度数据 // 读取温度数据 uint8_t temp_low = DS18B20_ReadByte(); uint8_t temp_high = DS18B20_ReadByte(); float temperature = (temp_high << 8) | temp_low; temperature /= 16; while(1){} return 0; } 上述代码只是一个简单的示例,实际情况下可能需要根据具体的开发环境和需求进行适当的调整。 ### 回答3: DS18B20是一款数字温度传感器,常用于温度测量应用。在STM32微控制器中进行DS18B20与STM32之间的通信,可以使用OneWire协议。 首先,需要在STM32的引脚上连接DS18B20传感器。DS18B20有三个引脚:VCC(连接到STM32的电源引脚)、GND(连接到STM32的地引脚)和DQ(数据引脚,连接到STM32的GPIO引脚)。 接下来,在STM32代码中,需要定义DS18B20传感器的数据引脚所连接的GPIO引脚号,并进行相应的初始化设置,包括将引脚设置为输出模式、拉高电平等。 然后,基于OneWire协议,可以通过STM32向DS18B20发送命令,并收集传感器返回的数据。例如,可以通过向DS18B20发送"开始测量温度"的命令,并等待一段时间,然后从DS18B20读取温度值。 在STM32代码中,可以编写一段函数来实现DS18B20与STM32之间的通信。该函数需要根据OneWire协议的要求,发送和接收数据。首先,发送复位信号(拉低数据引脚一段时间然后再拉高),然后发送命令和数据位,最后接收DS18B20返回的数据。需要注意的是,在接收数据时,STM32需要控制数据引脚的输入和输出状态。 最后,通过编写主函数,在STM32代码中调用这个函数,获取DS18B20传感器的温度数据,并进行相应的处理和显示。可以使用串口、LCD显示屏或其他适合的方式来展示温度数据。 综上所述,以上是关于DS18B20与STM32通信的简要代码描述。但是具体的实现要根据具体的STM32芯片型号和开发环境选择相应的开发工具和库。

ds18b20与stm32f103c8t6

DS18B20是一款数字温度传感器,能够通过一条单线串行接口与微处理器进行通信。它的通信基于1-Wire协议,可以直接测量环境温度和转化为数字信号输出。DS18B20可以在不同精度下进行温度测量,并且提供了一些控制和配置寄存器以方便用户使用。它的低功耗和小尺寸使得它在一些需要在狭小空间内进行温度测量的应用中得到了广泛的应用。 STM32F103C8T6是一款高性能、低功耗的单片机芯片,它基于ARM Cortex_M3内核,运行频率高达72MHz,集成了丰富的外设资源和高速总线接口。STM32F103C8T6的引脚较多,可以支持多种通信协议,如SPI、I2C、UART、CAN等。此外,STM32F103C8T6具有高速时钟系统,具备多重优化功能,比如智能功耗管理、多种休眠模式等,可以实现很多特殊需求下的工业自动化、智能仪器、无线通信和消费电子应用。 DS18B20与STM32F103C8T6的结合可以实现温度检测和控制的功能。DS18B20输出的数字温度值可以被STM32F103C8T6读取,并进行相关处理(比如温度报警、语音提示等)。另外,STM32F103C8T6也可以通过各种通信协议控制DS18B20进行配置,以满足一些特殊的应用要求。因此,DS18B20和STM32F103C8T6的组合,具有较高的应用价值和广泛的应用前景。

相关推荐

最新推荐

recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

tinyplay /storage/BFEF-19EE/wav.wav -D 0 cannot open device 0 for card 0 Unable to open PCM device 0.

这个错误信息可能是由于无法打开PCM设备0导致的。请检查以下几个方面,以便解决这个问题: 1. 你是否有足够的权限来访问该设备? 2. 检查一下PCM设备0是否已经被其他程序占用了。 3. 确认一下你的PCM设备是否已经被正确地配置和设置。 4. 检查一下你的系统是否有足够的内存和资源来支持你的PCM设备。 如果以上几个方面都检查过了,仍然无法解决问题,你可以尝试使用其他的设备号或者采用其他的操作系统来测试这个问题。
recommend-type

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩