import numpy as np # 构建用户-物品评分矩阵 user_item_matrix = np.array([ [3.5, 4.5, 0, 0], [0, 0, 3.5, 4.5], [4.0, 3.5, 4.0, 0] ]) # 计算用户之间的相似度矩阵(余弦相似度) user_sim_matrix = np.zeros((user_item_matrix.shape[0], user_item_matrix.shape[0])) for i in range(user_item_matrix.shape[0]): for j in range(user_item_matrix.shape[0]): if i == j: continue user_sim_matrix[i][j] = np.dot(user_item_matrix[i], user_item_matrix[j]) / ( np.linalg.norm(user_item_matrix[i]) * np.linalg.norm(user_item_matrix[j])) # 对于每个用户,计算推荐列表 for i in range(user_item_matrix.shape[0]): rated_items = np.where(user_item_matrix[i] > 0)[0] # 已评分或观看的物品 unrated_items = np.where(user_item_matrix[i] == 0)[0] # 未评分或观看的物品 scores = np.dot(user_sim_matrix[i], user_item_matrix) / np.sum(user_sim_matrix[i]) # 计算推荐分数 rec_items = unrated_items[np.argsort(scores[unrated_items])[::-1]] # 按推荐分数排序 print(f"为用户{i}推荐的电影是:{rec_items[:2]}").这段代码每一行的解释,给出每一行的解释,说明为什么?
时间: 2024-03-29 12:39:08 浏览: 139
第一行:导入numpy库,命名为np。
第二行:创建一个3x4的用户-物品评分矩阵,每行代表一个用户,每列代表一个物品,矩阵中的数值表示该用户对该物品的评分,0表示未评分或未观看。
第五行:创建一个与用户数相同的全0方阵,用于存储用户之间的相似度矩阵。
第六至九行:对于每一对不同的用户,计算它们之间的余弦相似度,并存储在相似度矩阵中。
第十二至二十二行:对于每个用户,找出他们已评分或观看过的物品和未评分或未观看的物品;然后,计算该用户与其他所有用户的相似度加权评分(即推荐分数),并按照推荐分数从高到低排序;最后,输出每个用户的前两个推荐物品。
注:np.dot()表示矩阵乘法,np.linalg.norm()表示求矩阵或向量的范数。
相关问题
import pandas as pd import numpy as np # 计算用户对歌曲的播放比例 triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_mergedpd[['user', 'listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count': 'total_listen_count'}, inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_mergedpd, triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_mergedpd['fractional_play_count'] = triplet_dataset_sub_song_mergedpd['listen_count'] / triplet_dataset_sub_song_merged['total_listen_count'] # 将用户和歌曲编码为数字 small_set = triplet_dataset_sub_song_mergedpd user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index': 'user_index'}, inplace=True) song_codes.rename(columns={'index': 'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set, song_codes, how='left') small_set = pd.merge(small_set, user_codes, how='left') # 将数据转换为稀疏矩阵形式 from scipy.sparse import coo_matrix mat_candidate = small_set[['us_index_value', 'so_index_value', 'fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)), dtype=float) # 使用SVD方法进行矩阵分解并进行推荐 from scipy.sparse import csc_matrix from scipy.sparse.linalg import svds import math as mt def compute_svd(urm, K): U, s, Vt = svds(urm, K) dim = (len(s), len(s)) S = np.zeros(dim, dtype=np.float32) for i in range(0, len(s)): S[i, i] = mt.sqrt(s[i]) U = csc_matrix(U, dtype=np.float32) S = csc_matrix(S, dtype=np.float32) Vt = csc_matrix(Vt, dtype=np.float32) return U, S, Vt def compute_estimated_matrix(urm, U, S, Vt, uTest, K, test): rightTerm = S * Vt max_recommendation = 250 estimatedRatings = np.zeros(shape=(MAX_UID, MAX_PID), dtype=np.float16) recomendRatings = np.zeros(shape=(MAX_UID, max_recommendation), dtype=np.float16) for userTest in uTest: prod = U[userTest, :] * rightTerm estimatedRatings[userTest, :] = prod.todense() recomendRatings[userTest, :] = (-estimatedRatings[userTest, :]).argsort()[:max_recommendation] return recomendRatings K = 50 urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] U, S, Vt = compute_svd(urm, K) uTest = [4, 5, 6, 7, 8, 73, 23] # uTest=[1b5bb32767963cbc215d27a24fef1aa01e933025] uTest_recommended_items = compute_estimated_matrix(urm, U, S, Vt 继续将这段代码输出完整
, 并进行解释:
```
import pandas as pd
import numpy as np
# 计算用户对歌曲的播放比例
triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user', 'listen_count']].groupby('user').sum().reset_index()
triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count': 'total_listen_count'}, inplace=True)
triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged, triplet_dataset_sub_song_merged_sum_df)
triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count'] / triplet_dataset_sub_song_merged['total_listen_count']
# 将用户和歌曲编码为数字
small_set = triplet_dataset_sub_song_merged
user_codes = small_set.user.drop_duplicates().reset_index()
song_codes = small_set.song.drop_duplicates().reset_index()
user_codes.rename(columns={'index': 'user_index'}, inplace=True)
song_codes.rename(columns={'index': 'song_index'}, inplace=True)
song_codes['so_index_value'] = list(song_codes.index)
user_codes['us_index_value'] = list(user_codes.index)
small_set = pd.merge(small_set, song_codes, how='left')
small_set = pd.merge(small_set, user_codes, how='left')
# 将数据转换为稀疏矩阵形式
from scipy.sparse import coo_matrix
mat_candidate = small_set[['us_index_value', 'so_index_value', 'fractional_play_count']]
data_array = mat_candidate.fractional_play_count.values
row_array = mat_candidate.us_index_value.values
col_array = mat_candidate.so_index_value.values
data_sparse = coo_matrix((data_array, (row_array, col_array)), dtype=float)
# 使用SVD方法进行矩阵分解并进行推荐
from scipy.sparse import csc_matrix
from scipy.sparse.linalg import svds
import math as mt
def compute_svd(urm, K):
U, s, Vt = svds(urm, K)
dim = (len(s), len(s))
S = np.zeros(dim, dtype=np.float32)
for i in range(0, len(s)):
S[i, i] = mt.sqrt(s[i])
U = csc_matrix(U, dtype=np.float32)
S = csc_matrix(S, dtype=np.float32)
Vt = csc_matrix(Vt, dtype=np.float32)
return U, S, Vt
def compute_estimated_matrix(urm, U, S, Vt, uTest, K, test):
rightTerm = S * Vt
max_recommendation = 250
estimatedRatings = np.zeros(shape=(MAX_UID, MAX_PID), dtype=np.float16)
recomendRatings = np.zeros(shape=(MAX_UID, max_recommendation), dtype=np.float16)
for userTest in uTest:
prod = U[userTest, :] * rightTerm
estimatedRatings[userTest, :] = prod.todense()
recomendRatings[userTest, :] = (-estimatedRatings[userTest, :]).argsort()[:max_recommendation]
return recomendRatings
K = 50
urm = data_sparse
MAX_PID = urm.shape[1]
MAX_UID = urm.shape[0]
U, S, Vt = compute_svd(urm, K)
uTest = [4, 5, 6, 7, 8, 73, 23] # uTest=[1b5bb32767963cbc215d27a24fef1aa01e933025]
uTest_recommended_items = compute_estimated_matrix(urm, U, S, Vt, uTest, K, test)
```
这段代码实现了一个基于SVD方法的推荐系统,具体步骤如下:
1. 读入数据,计算每个用户对每首歌曲的播放比例。
2. 将用户和歌曲编码为数字,转换为稀疏矩阵形式。
3. 使用SVD方法进行矩阵分解,得到用户和歌曲的隐向量。
4. 对于给定的测试用户,使用隐向量和分解后的矩阵计算出该用户对每首歌曲的预测评分。
5. 根据预测评分,为该用户推荐最高的250首歌曲。
其中,SVD方法是一种矩阵分解的方法,可以将一个大矩阵分解为多个小矩阵,这些小矩阵可以表示出原始矩阵中的潜在特征(即隐向量)。通过计算用户和歌曲的隐向量,可以获得它们之间的相似度,从而进行推荐。
解释代码import numpy as np import pandas as pd #数据文件格式用户id、商品id、评分、时间戳 header = ['user_id', 'item_id', 'rating', 'timestamp'] with open( "u.data", "r") as file_object: df=pd.read_csv(file_object,sep='\t',names=header) #读取u.data文件 print(df) n_users = df.user_id.unique().shape[0] n_items = df.item_id.unique().shape[0] print('Mumber of users = ' + str(n_users) + ' | Number of movies =' + str(n_items)) from sklearn.model_selection import train_test_split train_data, test_data = train_test_split(df, test_size=0.2, random_state=21) train_data_matrix = np.zeros((n_users, n_items)) for line in train_data.itertuples(): train_data_matrix[line[1] - 1, line[2] -1] = line[3] test_data_matrix = np.zeros((n_users, n_items)) for line in test_data.itertuples(): test_data_matrix[line[1] - 1, line[2] - 1] = line[3] print(train_data_matrix.shape) print(test_data_matrix.shape) from sklearn.metrics.pairwise import cosine_similarity #计算用户相似度 user_similarity = cosine_similarity(train_data_matrix) print(u"用户相似度矩阵: ", user_similarity.shape) print(u"用户相似度矩阵: ", user_similarity) def predict(ratings, similarity, type): # 基于用户相似度矩阵的 if type == 'user': mean_user_ratings = ratings.mean(axis=1) ratings_diff = (ratings - mean_user_ratings[:, np.newaxis] ) pred =mean_user_ratings[:, np.newaxis] + np.dot(similarity, ratings_diff)/ np.array( [np.abs(similarity).sum(axis=1)]).T print(u"预测值: ", pred.shape) return pred # 预测结果 user_prediction = predict(train_data_matrix, user_similarity, type='user') print(user_prediction)
这段代码实现了基于用户相似度的推荐系统。首先,代码读取了一个包含用户ID、商品ID、评分和时间戳的数据文件,并将其存储在一个Pandas数据框中。然后,代码将数据集分为训练集和测试集,并将它们转换为用户-物品矩阵。接下来,代码使用余弦相似度计算了用户之间的相似度矩阵,并定义了一个函数来预测用户对未评分物品的评分。函数中使用了用户相似度矩阵来计算预测评分值。最后,代码使用训练集数据和用户相似度矩阵来预测所有用户对所有商品的评分,并将结果存储在一个矩阵中。
阅读全文