音色转换self.generator_optimizer = torch.optim.Adam( g_params, lr=self.generator_lr, betas=(0.5, 0.999))
时间: 2023-06-20 16:04:41 浏览: 113
这是一个使用Adam优化器进行梯度下降的代码片段,用于训练音色转换模型中的生成器。Adam优化器是一种常用的优化算法,它可以自适应地调整学习率,同时考虑历史梯度的一阶矩和二阶矩信息,从而更加高效地进行梯度下降。其中,g_params是生成器的参数,self.generator_lr是学习率,betas是Adam优化器中的参数,用于计算一阶矩和二阶矩的衰减率。
相关问题
self.generator_optimizer = torch.optim.Adam( g_params, lr=self.generator_lr, betas=(0.5, 0.999))
这段代码是用 PyTorch 中的 Adam 优化器来更新 GPT 的生成器模型的参数。Adam 优化器是一种常用的随机梯度下降优化器,可以自适应地调整每个参数的学习率。lr 参数指定了学习率,betas 参数是 Adam 优化器的超参数,控制了梯度的一阶矩和二阶矩的衰减率。在训练过程中,可以使用 optimizer.zero_grad() 来清除梯度,使用 loss.backward() 来计算梯度,最后使用 optimizer.step() 来更新模型参数。
提供self attention GAN的pytorch代码,同时将损失函数替换成WGAN—GP中的损失函数
以下是使用PyTorch实现Self-Attention GAN(SAGAN)并替换成WGAN-GP损失函数的代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class SelfAttention(nn.Module):
def __init__(self, in_dim):
super(SelfAttention, self).__init__()
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
batch_size, c, h, w = x.size()
proj_query = self.query_conv(x).view(batch_size, -1, h*w).permute(0, 2, 1)
proj_key = self.key_conv(x).view(batch_size, -1, h*w)
energy = torch.bmm(proj_query, proj_key)
attention = self.softmax(energy)
proj_value = self.value_conv(x).view(batch_size, -1, h*w)
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(batch_size, c, h, w)
out = self.gamma*out + x
return out
class Generator(nn.Module):
def __init__(self, z_dim=100, image_size=64, conv_dim=64):
super(Generator, self).__init__()
self.image_size = image_size
self.fc = nn.Linear(z_dim, conv_dim*8*(image_size//16)**2)
self.conv1 = nn.Conv2d(conv_dim*8, conv_dim*4, 3, 1, 1)
self.conv2 = nn.Conv2d(conv_dim*4, conv_dim*2, 3, 1, 1)
self.self_attention = SelfAttention(conv_dim*2)
self.conv3 = nn.Conv2d(conv_dim*2, conv_dim, 3, 1, 1)
self.conv4 = nn.Conv2d(conv_dim, 3, 3, 1, 1)
self.bn1 = nn.BatchNorm2d(conv_dim*8)
self.bn2 = nn.BatchNorm2d(conv_dim*4)
self.bn3 = nn.BatchNorm2d(conv_dim*2)
self.bn4 = nn.BatchNorm2d(conv_dim)
def forward(self, z):
x = self.fc(z)
x = x.view(-1, 512, self.image_size//16, self.image_size//16)
x = F.relu(self.bn1(x))
x = F.interpolate(x, scale_factor=2)
x = F.relu(self.bn2(self.conv1(x)))
x = F.interpolate(x, scale_factor=2)
x = F.relu(self.bn3(self.self_attention(self.conv2(x))))
x = F.interpolate(x, scale_factor=2)
x = F.relu(self.bn4(self.conv3(x)))
x = torch.tanh(self.conv4(x))
return x
class Discriminator(nn.Module):
def __init__(self, image_size=64, conv_dim=64):
super(Discriminator, self).__init__()
self.conv1 = nn.Conv2d(3, conv_dim, 4, 2, 1)
self.conv2 = nn.Conv2d(conv_dim, conv_dim*2, 4, 2, 1)
self.conv3 = nn.Conv2d(conv_dim*2, conv_dim*4, 4, 2, 1)
self.self_attention = SelfAttention(conv_dim*4)
self.conv4 = nn.Conv2d(conv_dim*4, conv_dim*8, 4, 2, 1)
self.conv5 = nn.Conv2d(conv_dim*8, 1, 4, 1, 0)
self.bn1 = nn.BatchNorm2d(conv_dim)
self.bn2 = nn.BatchNorm2d(conv_dim*2)
self.bn3 = nn.BatchNorm2d(conv_dim*4)
self.bn4 = nn.BatchNorm2d(conv_dim*8)
def forward(self, x):
x = F.leaky_relu(self.conv1(x), 0.1)
x = F.leaky_relu(self.bn2(self.conv2(x)), 0.1)
x = F.leaky_relu(self.bn3(self.self_attention(self.conv3(x))), 0.1)
x = F.leaky_relu(self.bn4(self.conv4(x)), 0.1)
x = self.conv5(x)
return x.view(-1, 1)
# WGAN-GP loss
def wgan_gp_loss(discriminator, real_images, fake_images, batch_size, device):
# Calculate critic scores for real images
real_scores = discriminator(real_images)
# Sample random points in the latent space
z = torch.randn(batch_size, 100, device=device)
# Generate fake images
fake_images = fake_images.detach()
fake_images = Generator(z)
# Calculate critic scores for fake images
fake_scores = discriminator(fake_images)
# Compute the gradient penalty
alpha = torch.rand(batch_size, 1, 1, 1, device=device)
interpolated_images = (alpha * real_images + (1 - alpha) * fake_images).requires_grad_(True)
interpolated_scores = discriminator(interpolated_images)
gradients = torch.autograd.grad(outputs=interpolated_scores, inputs=interpolated_images,
grad_outputs=torch.ones_like(interpolated_scores), create_graph=True, retain_graph=True)[0]
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
# Compute the Wasserstein distance
wasserstein_distance = real_scores.mean() - fake_scores.mean()
# Compute the loss for the discriminator
d_loss = -wasserstein_distance + 10 * gradient_penalty
# Compute the loss for the generator
g_loss = -fake_scores.mean()
return d_loss, g_loss
```
在训练GAN的过程中,使用wgan_gp_loss函数来替代原来的GAN损失函数。例如:
```python
# 初始化模型和优化器
generator = Generator().to(device)
discriminator = Discriminator().to(device)
g_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
# 训练GAN
for epoch in range(num_epochs):
for i, (real_images, _) in enumerate(dataloader):
real_images = real_images.to(device)
batch_size = real_images.size(0)
# 训练判别器
discriminator.zero_grad()
d_loss, _ = wgan_gp_loss(discriminator, real_images, generator, batch_size, device)
d_loss.backward()
d_optimizer.step()
# 训练生成器
generator.zero_grad()
_, g_loss = wgan_gp_loss(discriminator, real_images, generator, batch_size, device)
g_loss.backward()
g_optimizer.step()
if i % 100 == 0:
print("Epoch [{}/{}], Step [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}".format(
epoch+1, num_epochs, i+1, len(dataloader), d_loss.item(), g_loss.item()))
# 保存模型和图片
with torch.no_grad():
fake_images = generator(fixed_z)
save_image(fake_images, "SAGAN_WGAN_GP_{}.png".format(epoch+1), nrow=8, normalize=True)
torch.save(generator.state_dict(), "SAGAN_WGAN_GP_Generator_{}.ckpt".format(epoch+1))
torch.save(discriminator.state_dict(), "SAGAN_WGAN_GP_Discriminator_{}.ckpt".format(epoch+1))
```
阅读全文