利用主定理说明以下时间函数的复杂度: T(n) = 9T(n/3) + n ;T(n) = T(2n/3) + 1 ;T(n) = 3T(n/4) + nlogn;T(n)=2T(n/2)+n
时间: 2023-06-05 14:09:05 浏览: 276
时间复杂度的几种计算方法
5星 · 资源好评率100%
根据主定理,对于时间函数 T(n) = 9T(n/3) + n,其中 a = 9,b = 3,d = 1,可以得到 T(n) 的复杂度为 O(nlogb a) = O(nlog3 9)。
对于时间函数 T(n) = T(2n/3) + 1,其中 a = 1,b = 3/2,d = 0,可以得到 T(n) 的复杂度为 O(logb n) = O(log3/2 n)。
对于时间函数 T(n) = 3T(n/4) + nlogn,其中 a = 3,b = 4,d = nlogn,可以得到 T(n) 的复杂度为 O(nlogb a) = O(nlog4 3)。
对于时间函数 T(n) = 2T(n/2) + n,其中 a = 2,b = 2,d = n,可以得到 T(n) 的复杂度为 O(nlogb a) = O(nlog2 2) = O(n)。
阅读全文