用matlab运行的单目-Lidar融合SLAM实验代码
时间: 2024-05-15 15:14:07 浏览: 184
由于单目-Lidar融合SLAM实验代码可能因为不同的硬件设备和软件环境而有所不同,这里提供一份基于Matlab的单目-Lidar融合SLAM实验代码供参考。
代码主要分为以下几个部分:
1. 相机和Lidar的标定以及数据读取(使用Matlab内置的相机标定工具箱和Velodyne的驱动程序)
2. 特征点提取和匹配(使用SURF算法和暴力匹配)
3. 运动估计和地图构建(使用基于PnP的位姿估计方法和基于Octree的点云地图构建方法)
代码如下:
```matlab
% Camera-Lidar SLAM with SURF feature matching
clear all
close all
% Camera calibration parameters
load('cam_calib.mat');
K = cameraParams.IntrinsicMatrix';
D = [cameraParams.RadialDistortion cameraParams.TangentialDistortion 0];
% Lidar calibration parameters
lidar = velodyneFileReader('lidar_data.pcap');
lidar.ScanDirection = 'Forward';
lidar.AzimuthOffsetCorrection = -45;
lidar.ElevationAngleOffsetCorrection = 0;
% SURF feature detection
detector = vision.CascadeObjectDetector('NumScaleLevels',4,'ScaleFactor',1.2,'MergeThreshold',30);
pointsPrev = [];
featuresPrev = [];
% Octree parameters
octreeRes = 0.1;
octreeMaxPts = 500;
% SLAM loop
while hasFrame(lidar)
% Read camera and Lidar data
img = read(lidar);
ptCloud = velodyne2pc(img,'Columns',{'x','y','z','intensity'});
% Camera-Lidar calibration
[R,t] = extrinsics(ptCloud.Location,K,D);
T_lidar2cam = [R t';0 0 0 1];
% SURF feature matching
bbox = step(detector,img);
points = detectSURFFeatures(rgb2gray(img),'ROI',bbox);
[features,points] = extractFeatures(rgb2gray(img),points);
if ~isempty(pointsPrev)
indexPairs = matchFeatures(features,featuresPrev,'Method','Exhaustive','MatchThreshold',50);
matchedPoints = points(indexPairs(:,1),:);
matchedPointsPrev = pointsPrev(indexPairs(:,2),:);
end
pointsPrev = points;
featuresPrev = features;
% PnP pose estimation
if exist('matchedPoints','var')
worldPoints = lidar2world(matchedPoints.Location,T_lidar2cam)';
imagePoints = matchedPointsPrev.Location;
[R_cam2world,t_cam2world] = extrinsics(imagePoints,worldPoints,K);
T_cam2world = [R_cam2world t_cam2world';0 0 0 1];
else
T_cam2world = eye(4);
end
% Octree map building
ptCloudLidar = pointCloud(ptCloud.Location);
ptCloudLidar = pctransform(ptCloudLidar,@(x) T_lidar2cam*[x';ones(1,size(x,1))]);
octree = pcfitoctree(ptCloudLidar,'MaxNumPoints',octreeMaxPts,'BlockSize',octreeRes);
map = octree2world(octree,T_lidar2cam,T_cam2world,octreeRes);
% Visualization
figure(1)
pcshow(ptCloudLidar,'MarkerSize',10)
hold on
pcshow(map,'MarkerSize',30,'MarkerColor',[1 0 0])
hold off
end
```
代码中的`cam_calib.mat`是用Matlab内置的相机标定工具箱进行的相机标定后保存的文件,`lidar_data.pcap`是Velodyne采集到的Lidar数据。
代码实现了基于SURF特征匹配的单目-Lidar融合SLAM,其中相机和Lidar的标定使用Matlab内置的相机标定工具箱和Velodyne的驱动程序,特征点提取和匹配使用SURF算法和暴力匹配,运动估计和地图构建使用基于PnP的位姿估计方法和基于Octree的点云地图构建方法。在SLAM循环中,程序会读取Lidar数据,进行相机和Lidar的标定,进行SURF特征匹配,进行PnP位姿估计,进行Octree点云地图构建,并可视化结果。
需要注意的是,这份代码只是一个简单的示例,实际情况下需要根据具体的硬件设备和软件环境进行修改和优化。
阅读全文