lstm attention代码
时间: 2023-08-27 11:07:08 浏览: 147
attention代码
以下是一个基于LSTM和Attention机制的文本分类模型的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class LSTMAttention(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, dropout):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim, bidirectional=True)
self.fc = nn.Linear(hidden_dim * 2, output_dim)
self.dropout = nn.Dropout(dropout)
self.attention = nn.Linear(hidden_dim * 2, 1)
def forward(self, text):
embedded = self.dropout(self.embedding(text))
outputs, (hidden, cell) = self.lstm(embedded)
# Attention mechanism
attention_weights = F.softmax(self.attention(outputs), dim=0)
weighted_outputs = torch.sum(outputs * attention_weights, dim=0)
# Concatenate the final forward and backward hidden state
hidden = torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)
# Apply dropout
hidden = self.dropout(hidden)
# Feed the hidden state through the fully connected layer
output = self.fc(hidden)
return output
```
该模型接受一个整数序列作为输入,并输出一个指定大小的输出。它包括一个嵌入层、一个双向LSTM层、一个注意力层、一个全连接层和一个dropout层。在前向传递时,我们首先通过嵌入层传递输入序列,然后通过双向LSTM层获得输出和隐藏状态。我们使用注意力机制来计算加权输出,然后将最终的前向和后向隐藏状态连接在一起,并通过全连接层进行分类。最后,我们使用dropout层来减少过拟合。
阅读全文