attention-lstm matlab代码
时间: 2023-09-01 07:11:04 浏览: 158
以下是一个简单的 attention-lstm 的 MATLAB 代码示例:
```matlab
classdef AttentionLSTM < nnet.layer.Layer
properties
HiddenSize
SequenceLength
NumHiddenUnits
NumFeatures
AttentionWeights
AttentionBias
LSTMWeights
LSTMBias
OutputWeights
OutputBias
end
methods
function layer = AttentionLSTM(hiddenSize, sequenceLength, numHiddenUnits, numFeatures)
layer.HiddenSize = hiddenSize;
layer.SequenceLength = sequenceLength;
layer.NumHiddenUnits = numHiddenUnits;
layer.NumFeatures = numFeatures;
% Initialize weights and biases
layer.AttentionWeights = randn(hiddenSize, numHiddenUnits);
layer.AttentionBias = zeros(hiddenSize, 1);
layer.LSTMWeights = randn(4*numHiddenUnits, numFeatures);
layer.LSTMBias = zeros(4*numHiddenUnits, 1);
layer.OutputWeights = randn(hiddenSize, numHiddenUnits);
layer.OutputBias = zeros(hiddenSize, 1);
end
function Z = predict(layer, X)
% Initialize hidden and cell state
h = zeros(layer.NumHiddenUnits, 1);
c = zeros(layer.NumHiddenUnits, 1);
% Initialize attention context vector
a = zeros(layer.HiddenSize, 1);
% Loop through sequence
for i = 1:layer.SequenceLength
% Compute attention weights
e = layer.AttentionWeights * h + layer.AttentionBias;
alpha = softmax(e);
% Compute attention context vector
a = X(:, i) * alpha';
% Concatenate input and attention context vector
z = [X(:, i); a];
% Compute LSTM gates
gates = layer.LSTMWeights * z + layer.LSTMBias;
f = sigmoid(gates(1:layer.NumHiddenUnits));
i = sigmoid(gates(layer.NumHiddenUnits+1:2*layer.NumHiddenUnits));
o = sigmoid(gates(2*layer.NumHiddenUnits+1:3*layer.NumHiddenUnits));
g = tanh(gates(3*layer.NumHiddenUnits+1:end));
% Update cell state and hidden state
c = f .* c + i .* g;
h = o .* tanh(c);
end
% Apply output layer
Z = layer.OutputWeights * h + layer.OutputBias;
end
end
end
```
这个类定义了一个 Attention LSTM 层,它包括一个注意力机制和一个 LSTM 细胞。在预测时,输入的数据是一个大小为 `(numFeatures, sequenceLength)` 的矩阵 `X`。在循环中,我们首先计算注意力权重,然后使用它们计算注意力上下文向量。接下来,我们将输入和注意力上下文向量连接起来,计算 LSTM 门的值,并更新细胞状态和隐藏状态。最后,我们应用输出层并返回输出矩阵 `Z`。
阅读全文