def map_data(data_map, axis_num): data_map = np.max(data_map, axis=axis_num) data_map -= data_map.min() data_map = data_map / data_map.max() data_map = np.array(data_map * 255, dtype=np.uint8) return data_map 翻译

时间: 2024-04-21 08:26:19 浏览: 194
这是一个 Python 函数,它的作用是将一个数据映射(data_map)进行处理,并返回处理后的结果。 函数的参数有两个: - data_map:表示需要进行处理的数据映射,它是一个 N 维数组(N 可以是任意正整数)。 - axis_num:表示在哪个维度上进行处理,它是一个整数。 函数的处理过程如下: - 使用 NumPy 库中的 max 函数,对 data_map 进行聚合操作,返回在指定维度上的最大值,赋值给 data_map。 - 使用 NumPy 库中的 min 函数,对 data_map 进行聚合操作,返回在所有维度上的最小值,然后将 data_map 中的所有元素减去该最小值,赋值给 data_map。 - 使用 NumPy 库中的 max 函数,对 data_map 进行聚合操作,返回在所有维度上的最大值,然后将 data_map 中的所有元素除以该最大值,赋值给 data_map。 - 将 data_map 中的所有元素乘以 255,并将结果转换为无符号整数类型(dtype=np.uint8),赋值给 data_map。 - 返回处理后的 data_map。 整个函数的作用是将数据映射进行归一化,然后将结果转换为 8 位无符号整数类型,以便于后续的处理和可视化。
相关问题

def map_data(data_map, axis_num): data_map = np.max(data_map, axis=axis_num) data_map -= data_map.min() data_map = data_map / data_map.max() data_map = np.array(data_map * 255, dtype=np.uint8) return data_map Eigon实现

以下是Eigen实现: ``` #include <iostream> #include <Eigen/Dense> using namespace Eigen; using namespace std; MatrixXi map_data(MatrixXi data_map, int axis_num) { int height = data_map.rows(); int width = data_map.cols(); // reduce the data_map along the given axis_num VectorXi max_vals(width); if (axis_num == 0) { max_vals = data_map.rowwise().maxCoeff(); } else if (axis_num == 1) { max_vals = data_map.colwise().maxCoeff(); } // normalize the result int min_val = max_vals.minCoeff(); int max_val = max_vals.maxCoeff(); MatrixXi result = (data_map.array() - min_val) * 255 / (max_val - min_val); return result; } int main() { // example usage MatrixXi data_map(3, 3); data_map << 1, 2, 3, 4, 5, 6, 7, 8, 9; MatrixXi result = map_data(data_map, 0); cout << result << endl; return 0; } ``` 需要注意的是,Eigen中的Matrix类模板参数中有两个参数,第一个参数是矩阵元素的类型,第二个参数是矩阵的行数和列数,用RowMajor表示按行存储,用ColMajor表示按列存储。在这个实现中,我们用MatrixXi表示矩阵元素为整型,且按列存储。

使用C++ eigen库翻译以下python代码import pandas as pd import numpy as np import time import random def main(): eigen_list = [] data = [[1,2,4,7,6,3],[3,20,1,2,5,4],[2,0,1,5,8,6],[5,3,3,6,3,2],[6,0,5,2,19,3],[5,2,4,9,6,3]] g_csi_corr = np.cov(data, rowvar=True) #print(g_csi_corr) eigenvalue, featurevector = np.linalg.eigh(g_csi_corr) print("eigenvalue:",eigenvalue) eigen_list.append(max(eigenvalue)) #以下代码验证求解csi阈值 eigen_list.append(1.22) eigen_list.append(-54.21) eigen_list.append(8.44) eigen_list.append(-27.83) eigen_list.append(33.12) #eigen_list.append(40.29) print(eigen_list) eigen_a1 = np.array(eigen_list) num1 = len(eigen_list) eigen_a2 = eigen_a1.reshape((-1, num1)) eigen_a3 = np.std(eigen_a2, axis=0) eigen_a4 = eigen_a3.tolist() k = (0.016 - 0.014) / (max(eigen_a4) - min(eigen_a4)) eigen_a5 = [0.014 + k * (i - min(eigen_a4)) for i in eigen_a4] tri_threshold = np.mean(eigen_a5)

#include <iostream> #include <Eigen/Dense> using namespace Eigen; int main() { std::vector<double> eigen_list; MatrixXd data(6, 6); data << 1, 2, 4, 7, 6, 3, 3, 20, 1, 2, 5, 4, 2, 0, 1, 5, 8, 6, 5, 3, 3, 6, 3, 2, 6, 0, 5, 2, 19, 3, 5, 2, 4, 9, 6, 3; MatrixXd g_csi_corr = data.transpose() * data / 6.0; EigenSolver<MatrixXd> es(g_csi_corr); VectorXd eigenvalue = es.eigenvalues().real(); std::cout << "eigenvalue: " << eigenvalue.transpose() << std::endl; eigen_list.push_back(eigenvalue.maxCoeff()); eigen_list.push_back(1.22); eigen_list.push_back(-54.21); eigen_list.push_back(8.44); eigen_list.push_back(-27.83); eigen_list.push_back(33.12); //eigen_list.push_back(40.29); std::cout << "eigen_list: "; for (std::vector<double>::iterator it = eigen_list.begin(); it != eigen_list.end(); ++it) std::cout << *it << " "; std::cout << std::endl; int num1 = eigen_list.size(); MatrixXd eigen_a2 = Map<MatrixXd>(eigen_list.data(), num1, 1); VectorXd eigen_a3 = eigen_a2.array().rowwise().mean().transpose(); VectorXd eigen_a4 = (eigen_a2 - eigen_a3.replicate(num1, 1)).array().abs().rowwise().mean().transpose(); double k = 0.002 / (eigen_a4.maxCoeff() - eigen_a4.minCoeff()); VectorXd eigen_a5 = 0.014 + k * (eigen_a4.array() - eigen_a4.minCoeff()); double tri_threshold = eigen_a5.mean(); std::cout << "tri_threshold: " << tri_threshold << std::endl; return 0; }
阅读全文

相关推荐

这是对单个文件进行预测“import os import json import torch from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt from model import convnext_tiny as create_model def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"using {device} device.") num_classes = 5 img_size = 224 data_transform = transforms.Compose( [transforms.Resize(int(img_size * 1.14)), transforms.CenterCrop(img_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image img_path = "../tulip.jpg" assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path) plt.imshow(img) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) with open(json_path, "r") as f: class_indict = json.load(f) # create model model = create_model(num_classes=num_classes).to(device) # load model weights model_weight_path = "./weights/best_model.pth" model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)], predict[predict_cla].numpy()) plt.title(print_res) for i in range(len(predict)): print("class: {:10} prob: {:.3}".format(class_indict[str(i)], predict[i].numpy())) plt.show() if name == 'main': main()”,改为对指定文件夹下的左右文件进行预测,并绘制混淆矩阵,

最新推荐

recommend-type

(179979052)基于MATLAB车牌识别系统【带界面GUI】.zip

基于MATLAB车牌识别系统【带界面GUI】.zip。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

DG储能选址定容模型matlab 程序采用改进粒子群算法,考虑时序性得到分布式和储能的选址定容模型,程序运行可靠 这段程序是一个改进的粒子群算法,主要用于解决电力系统中的优化问题 下面我将对程序进行详

DG储能选址定容模型matlab 程序采用改进粒子群算法,考虑时序性得到分布式和储能的选址定容模型,程序运行可靠 这段程序是一个改进的粒子群算法,主要用于解决电力系统中的优化问题。下面我将对程序进行详细分析。 首先,程序开始时加载了一些数据文件,包括gfjl、fljl、fhjl1、cjgs和fhbl。这些文件可能包含了电力系统的各种参数和数据。 接下来是一些参数的设置,包括三种蓄电池的参数矩阵、迭代次数、种群大小、速度更新参数、惯性权重、储能动作策略和限制条件等。 然后,程序进行了一些初始化操作,包括初始化种群、速度和适应度等。 接下来是主要的迭代过程。程序使用粒子群算法的思想,通过更新粒子的位置和速度来寻找最优解。在每次迭代中,程序计算了每个粒子的适应度,并更新个体最佳位置和全局最佳位置。 在每次迭代中,程序还进行了一些额外的计算,如潮流计算、储能约束等。这些计算可能涉及到电力系统的潮流计算、功率平衡等知识点。 最后,程序输出了一些结果,包括最佳位置和适应度等。同时,程序还绘制了一些图形,如电压和损耗的变化等。 综上所述,这段程序主要是一个改进的粒子群算法,用于解决电力
recommend-type

三保一评关系与区别分析

三保一评关系与区别分析
recommend-type

Day-05 Vue22222222222

Day-05 Vue22222222222
recommend-type

多功能知识付费源码下载实现流量互导多渠道变现+搭建教程

多功能知识付费源码下载实现流量互导多渠道变现+搭建教程。资源变现类产品的许多优势,并剔除了那些无关紧要的元素,使得本产品在运营和变现能力 方面实现了质的飞跃。多领域素材资源知识变现营销裂变独立版本。 支持:视频、音频、图文、文档、会员、社群、用户发布、创作分成、任务裂变、流量主、在线下载等多种功能,更多功能 正在不断更新中... 支持流量主变现模式,付费下载付费古观看等变现模式。 实现流量互导,多渠道变现。可以独立部署,并绑定自有独立域名,没有域名限制。
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。