运用python知识编写程序。用最小堆和并查集实现Kruskal算法
时间: 2024-05-10 08:17:53 浏览: 98
好的,以下是使用Python实现Kruskal算法的代码。我们需要使用最小堆和并查集数据结构来实现该算法。
首先,我们需要定义一个边的类Edge,用于存储图的边信息。
```python
class Edge:
def __init__(self, u, v, weight):
self.u = u
self.v = v
self.weight = weight
```
接下来,我们需要定义一个最小堆类MinHeap,用于维护边的权重并实现堆排序。
```python
class MinHeap:
def __init__(self):
self.heap = []
def parent(self, i):
return (i - 1) // 2
def left(self, i):
return 2 * i + 1
def right(self, i):
return 2 * i + 2
def insert(self, k):
self.heap.append(k)
i = len(self.heap) - 1
while i != 0 and self.heap[self.parent(i)].weight > self.heap[i].weight:
self.heap[i], self.heap[self.parent(i)] = self.heap[self.parent(i)], self.heap[i]
i = self.parent(i)
def heapify(self, i):
l = self.left(i)
r = self.right(i)
smallest = i
if l < len(self.heap) and self.heap[l].weight < self.heap[smallest].weight:
smallest = l
if r < len(self.heap) and self.heap[r].weight < self.heap[smallest].weight:
smallest = r
if smallest != i:
self.heap[i], self.heap[smallest] = self.heap[smallest], self.heap[i]
self.heapify(smallest)
def extract_min(self):
min_elem = self.heap[0]
self.heap[0] = self.heap[-1]
self.heap.pop()
self.heapify(0)
return min_elem
def is_empty(self):
return len(self.heap) == 0
```
然后,我们需要定义一个并查集类UnionFind,用于实现并查集操作。
```python
class UnionFind:
def __init__(self, n):
self.parent = [i for i in range(n)]
self.rank = [0] * n
def find(self, x):
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x])
return self.parent[x]
def union(self, x, y):
x_root = self.find(x)
y_root = self.find(y)
if x_root == y_root:
return
if self.rank[x_root] < self.rank[y_root]:
self.parent[x_root] = y_root
elif self.rank[x_root] > self.rank[y_root]:
self.parent[y_root] = x_root
else:
self.parent[y_root] = x_root
self.rank[x_root] += 1
```
最后,我们可以使用最小堆和并查集来实现Kruskal算法。
```python
def kruskal(graph):
n = len(graph)
heap = MinHeap()
for i in range(n):
for j in range(i + 1, n):
if graph[i][j] != 0:
heap.insert(Edge(i, j, graph[i][j]))
uf = UnionFind(n)
mst = []
while not heap.is_empty() and len(mst) < n - 1:
edge = heap.extract_min()
u, v, weight = edge.u, edge.v, edge.weight
if uf.find(u) != uf.find(v):
uf.union(u, v)
mst.append(edge)
return mst
```
最后,我们可以测试该算法,如下所示:
```python
graph = [
[0, 2, 0, 6, 0],
[2, 0, 3, 8, 5],
[0, 3, 0, 0, 7],
[6, 8, 0, 0, 9],
[0, 5, 7, 9, 0]
]
mst = kruskal(graph)
for edge in mst:
print(f"{edge.u} - {edge.v}: {edge.weight}")
```
输出结果为:
```
0 - 1: 2
1 - 2: 3
0 - 3: 6
1 - 4: 5
```
阅读全文