def load_data(data_file,usecols): ''' 读取数据文件,加载数据 ''' data=[] with open(data_file,'r') as csvfile: data_reader=csv.DictReader(csvfile)#用于按行读取csv文件,并且每一行都会被转化成一个字典类型,其中字典的键值对分别对应着csv文件的表头和该行的数据 # === 数据处理 === for row in data_reader: # 取出每行数据,组合为一个列表放入数据列表中 row_data=[] # 注意csv模块读入的数据全部为字符串类型 for col in usecols: str_val=row[col] #数据类型转换为float,如果是'NA',则返回nan row_data.append(float(str_val) if str_val!='NA' else np.nan) # 如果行数据中不包含nan才保存该行记录 if not any(np.isnan(row_data)): data.append(row_data) # 将data转换为ndarray data_arr=np.array(data) return data_arr

时间: 2024-02-14 17:35:38 浏览: 180
这段代码的作用是读取一个csv文件,并将指定的列转换为浮点数,不包含缺失值('NA')的行数据保存为ndarray类型并返回。其中参数data_file是数据文件路径,usecols是要转换为浮点数的列。代码中使用了csv模块按行读取csv文件,并将每行数据转换为字典类型,然后根据usecols获取指定列的值并转换为浮点数,最后将该行数据保存为一个列表,如果该行数据中包含缺失值则不保存。最终将所有保存的数据转换为ndarray类型并返回。
相关问题

def load_data(data_file, usecols): ''' 读取数据文件,加载数据 ''' data = [] with open(data_file, 'r') as csvfile: data_reader = csv.DictReader(csvfile) # === 数据处理 === for row in data_reader: # 取出每行数据,组合为一个列表放入数据列表中 row_data = [] # 注意csv模块读入的数据全部为字符串类型 for col in usecols: str_val = row[col] # 数据类型转换为float,如果是'NA',则返回nan row_data.append(float(str_val) if str_val != 'NA' else np.nan) # 如果行数据中不包含nan才保存该行记录 if not any(np.isnan(row_data)): data.append(row_data) # 将data转换为ndarray data_arr = np.array(data) return data_arr

这也是一个从数据文件中加载数据的函数定义,但与之前的函数实现方式不同。它使用了Python标准库的csv模块读取数据,而不是pandas库。该函数将每行数据读取为一个字典类型的对象,并使用usecols参数指定需要读取的列。读取完成后,将数据转换为一个二维ndarray数组并返回。 具体实现中,将每行数据中指定的列转换为float类型,如果值为'NA',则转换为numpy库中的nan值。如果该行数据中不包含nan值,则将其加入到待返回的数据列表中。最后,将数据列表转换为ndarray并返回。 需要注意的是,该函数中使用了numpy库,因此需要在函数开头引入该库。 示例调用方式如下: ```python data = load_data("data.csv", ["col1", "col2"]) ``` 该示例代码将从名为"data.csv"的文件中加载"col1"和"col2"两列数据,并返回一个包含这两列数据的ndarray数组。

def get_cve_data(project_type="java"): cve_data = None if project_type == "java": cve_data = getattr(g, '_java_cve_data', None) if cve_data is None: with open(java_vul_fixing_file) as fin: cve_data = g._java_cve_data = json.load(fin) elif project_type == "c": cve_data = getattr(g, '_c_cve_data', None) if cve_data is None: with open(c_vul_fixing_file) as fin: cve_data = g._c_cve_data = json.load(fin) return cve_data

这段代码定义了一个名为 `get_cve_data` 的函数,用于获取特定项目类型的 CVE 数据。函数接受一个可选的参数 `project_type`,默认值为 `"java"`。 函数首先定义了一个变量 `cve_data` 并将其初始化为 `None`。然后,根据 `project_type` 的值,它会从全局对象 `g` 中获取对应项目类型的 CVE 数据。如果 `cve_data` 为 `None`,则说明还没有加载过该项目类型的数据,函数会从相应的文件中读取 JSON 数据,并将其保存到 `g` 对象中。 最后,函数返回获取到的 CVE 数据。 这段代码假设在全局对象 `g` 中存在用于存储 Java 和 C 项目的 CVE 数据的属性 `_java_cve_data` 和 `_c_cve_data`。它还假设有两个文件路径 `java_vul_fixing_file` 和 `c_vul_fixing_file` 分别指向存储 Java 和 C 项目的 CVE 数据的 JSON 文件。 你可以根据需要,修改文件路径和属性名称以适应你的代码结构和数据存储方式。
阅读全文

相关推荐

import json from data_define import Record # 先定义一个抽象类用来做顶层设计,确定有那些功能需要实现 class FileReader: def read_data(self) -> list[Record]: """读取文件的数据,读到的每一条数据都转换为Record对象。将它们都封装到list内返回即可""" pass class TextFileReader(FileReader): def __init__(self,path): self.path = path # 定义成员变量记录文件的路径 # 复写(实现抽象方法)父类的方法 def read_data(self) -> list[Record]: f = open(self.path,"r",encoding="UFT-8") record_list: list[Record] = [] for line in f.readlines(): line = line.strip() # 消除读取到的每一行数据中的\n data_list = line.split(",") record = Record(data_list[0],data_list[1],int(data_list[2]),data_list[3]) record_list.append(record) f.close() return record_list class JsonFileReader(FileReader): def __init__(self,path): self.path = path def read_data(self) -> list[Record]: f = open(self.path,"r",encoding="UFT-8") record_list: list[Record] = [] for line in f.readlines(): data_dict = json.load((line)) record = Record(data_dict["data"],data_dict["order_id"],int(data_dict["money"]),data_dict("province")) record_list.append(record) f.close() return record_list if __name__ == '__main__': text_file_reader = TextFileReader("D:/2011年1月销售数据。txt") json_file_reader = JsonFileReader("D:/2011年2月销售数据JSON.txt") list1 = text_file_reader.read_data() list2 = json_file_reader.resa_data() for l in list1: print(l)

# 定义数据集读取器 def load_data(mode='train'): # 数据文件 datafile = './data/data116648/mnist.json.gz' print('loading mnist dataset from {} ......'.format(datafile)) data = json.load(gzip.open(datafile)) train_set, val_set, eval_set = data # 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS IMG_ROWS = 28 IMG_COLS = 28 if mode == 'train': imgs = train_set[0] labels = train_set[1] elif mode == 'valid': imgs = val_set[0] labels = val_set[1] elif mode == 'eval': imgs = eval_set[0] labels = eval_set[1] imgs_length = len(imgs) assert len(imgs) == len(labels), \ "length of train_imgs({}) should be the same as train_labels({})".format( len(imgs), len(labels)) index_list = list(range(imgs_length)) # 读入数据时用到的batchsize BATCHSIZE = 100 # 定义数据生成器 def data_generator(): if mode == 'train': random.shuffle(index_list) imgs_list = [] labels_list = [] for i in index_list: img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32') img_trans=-img #转变颜色 label = np.reshape(labels[i], [1]).astype('int64') label_trans=label imgs_list.append(img) imgs_list.append(img_trans) labels_list.append(label) labels_list.append(label_trans) if len(imgs_list) == BATCHSIZE: yield np.array(imgs_list), np.array(labels_list) imgs_list = [] labels_list = [] # 如果剩余数据的数目小于BATCHSIZE, # 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch if len(imgs_list) > 0: yield np.array(imgs_list), np.array(labels_list) return data_generator

JSONDecodeError Traceback (most recent call last) Cell In[17], line 5 3 # 读取文件数据 4 with open(path, "r") as f: ----> 5 row_data = json.load(f) 6 # 读取每一条json数据 7 for d in row_data: File C:\ProgramData\anaconda3\lib\json\__init__.py:293, in load(fp, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw) 274 def load(fp, *, cls=None, object_hook=None, parse_float=None, 275 parse_int=None, parse_constant=None, object_pairs_hook=None, **kw): 276 """Deserialize fp (a .read()-supporting file-like object containing 277 a JSON document) to a Python object. 278 (...) 291 kwarg; otherwise JSONDecoder is used. 292 """ --> 293 return loads(fp.read(), 294 cls=cls, object_hook=object_hook, 295 parse_float=parse_float, parse_int=parse_int, 296 parse_constant=parse_constant, object_pairs_hook=object_pairs_hook, **kw) File C:\ProgramData\anaconda3\lib\json\__init__.py:346, in loads(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw) 341 s = s.decode(detect_encoding(s), 'surrogatepass') 343 if (cls is None and object_hook is None and 344 parse_int is None and parse_float is None and 345 parse_constant is None and object_pairs_hook is None and not kw): --> 346 return _default_decoder.decode(s) 347 if cls is None: 348 cls = JSONDecoder File C:\ProgramData\anaconda3\lib\json\decoder.py:340, in JSONDecoder.decode(self, s, _w) 338 end = _w(s, end).end() 339 if end != len(s): --> 340 raise JSONDecodeError("Extra data", s, end) 341 return obj JSONDecodeError: Extra data: line 2 column 1 (char 15)

import os import json import torch from PIL import Image from torchvision import transforms from model import resnet34 def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image # 指向需要遍历预测的图像文件夹 imgs_root = "../dataset/val" assert os.path.exists(imgs_root), f"file: '{imgs_root}' dose not exist." # 读取指定文件夹下所有jpg图像路径 img_path_list = [os.path.join(imgs_root, i) for i in os.listdir(imgs_root) if i.endswith(".jpg")] # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), f"file: '{json_path}' dose not exist." json_file = open(json_path, "r") class_indict = json.load(json_file) # create model model = resnet34(num_classes=16).to(device) # load model weights weights_path = "./newresNet34.pth" assert os.path.exists(weights_path), f"file: '{weights_path}' dose not exist." model.load_state_dict(torch.load(weights_path, map_location=device)) # prediction model.eval() batch_size = 8 # 每次预测时将多少张图片打包成一个batch with torch.no_grad(): for ids in range(0, len(img_path_list) // batch_size): img_list = [] for img_path in img_path_list[ids * batch_size: (ids + 1) * batch_size]: assert os.path.exists(img_path), f"file: '{img_path}' dose not exist." img = Image.open(img_path) img = data_transform(img) img_list.append(img) # batch img # 将img_list列表中的所有图像打包成一个batch batch_img = torch.stack(img_list, dim=0) # predict class output = model(batch_img.to(device)).cpu() predict = torch.softmax(output, dim=1) probs, classes = torch.max(predict, dim=1) for idx, (pro, cla) in enumerate(zip(probs, classes)): print("image: {} class: {} prob: {:.3}".format(img_path_list[ids * batch_size + idx], class_indict[str(cla.numpy())], pro.numpy())) if __name__ == '__main__': main()

最新推荐

recommend-type

Python实现读取txt文件中的数据并绘制出图形操作示例

Python是一种强大的编程语言,尤其在数据分析和可视化领域中广泛应用。本示例主要讲解如何使用Python读取txt文件中的数据,并利用这些数据绘制图形。在Python中,读取txt文件通常涉及`open()`函数和文件处理模式,而...
recommend-type

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件.zip

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件如果权重无法下载,则可能是存储库超出了 git lfs 配额。请从没有此限制的bitbucket 存储库中提取。此存储库包含 yolov3 权重以及配置文件。该模型在Kaggle Open Images 挑战赛的私有 LB 上实现了 42.407 的 mAP 。为了使用这些权重,您需要安装darknet 。您可以在项目网站上阅读更多相关信息。有多种方法可以使用 darknet 进行检测。一种方法是创建一个 txt 文件,其中包含要运行检测的图像的路径,并从包含的 yolo.data 文件中指向该文件。运行检测的命令(假设 darknet 安装在该 repo 的根目录中)是 ./darknet/darknet detector valid yolo.data yolov3-spp.cfg yolov3-spp_final.weights我分享这些权重是因为它们可能对某些人有用。如果您遇到任何问题,我无法提供任何支持。Yolo 不太容易排除故障,如果您遇到段错误,则需要您自己找出问题所
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001