UNET跳跃连接MATLAB代码
时间: 2024-01-03 07:03:01 浏览: 161
以下是一个简单的UNet跳跃连接的MATLAB代码示例:
```matlab
% 定义UNET网络结构
inputLayer = imageInputLayer([256 256 3]);
conv1 = convolution2dLayer(3, 64, 'Padding', 'same');
relu1 = reluLayer();
conv2 = convolution2dLayer(3, 64, 'Padding', 'same');
relu2 = reluLayer();
pool1 = maxPooling2dLayer(2, 'Stride', 2);
conv3 = convolution2dLayer(3, 128, 'Padding', 'same');
relu3 = reluLayer();
conv4 = convolution2dLayer(3, 128, 'Padding', 'same');
relu4 = reluLayer();
pool2 = maxPooling2dLayer(2, 'Stride', 2);
conv5 = convolution2dLayer(3, 256, 'Padding', 'same');
relu5 = reluLayer();
conv6 = convolution2dLayer(3, 256, 'Padding', 'same');
relu6 = reluLayer();
pool3 = maxPooling2dLayer(2, 'Stride', 2);
conv7 = convolution2dLayer(3, 512, 'Padding', 'same');
relu7 = reluLayer();
conv8 = convolution2dLayer(3, 512, 'Padding', 'same');
relu8 = reluLayer();
pool4 = maxPooling2dLayer(2, 'Stride', 2);
conv9 = convolution2dLayer(3, 1024, 'Padding', 'same');
relu9 = reluLayer();
conv10 = convolution2dLayer(3, 1024, 'Padding', 'same');
relu10 = reluLayer();
tConv1 = transposedConv2dLayer(2, 512, 'Stride', 2);
cat1 = concatenationLayer(3);
conv11 = convolution2dLayer(3, 512, 'Padding', 'same');
relu11 = reluLayer();
conv12 = convolution2dLayer(3, 512, 'Padding', 'same');
relu12 = reluLayer();
tConv2 = transposedConv2dLayer(2, 256, 'Stride', 2);
cat2 = concatenationLayer(3);
conv13 = convolution2dLayer(3, 256, 'Padding', 'same');
relu13 = reluLayer();
conv14 = convolution2dLayer(3, 256, 'Padding', 'same');
relu14 = reluLayer();
tConv3 = transposedConv2dLayer(2, 128, 'Stride', 2);
cat3 = concatenationLayer(3);
conv15 = convolution2dLayer(3, 128, 'Padding', 'same');
relu15 = reluLayer();
conv16 = convolution2dLayer(3, 128, 'Padding', 'same');
relu16 = reluLayer();
tConv4 = transposedConv2dLayer(2, 64, 'Stride', 2);
cat4 = concatenationLayer(3);
conv17 = convolution2dLayer(3, 64, 'Padding', 'same');
relu17 = reluLayer();
conv18 = convolution2dLayer(3, 64, 'Padding', 'same');
relu18 = reluLayer();
outputLayer = convolution2dLayer(1, 1);
outputLayer.Name = 'output';
% 将网络结构组装成DAG网络
layers = [
inputLayer
conv1
relu1
conv2
relu2
pool1
conv3
relu3
conv4
relu4
pool2
conv5
relu5
conv6
relu6
pool3
conv7
relu7
conv8
relu8
pool4
conv9
relu9
conv10
relu10
tConv1
cat1
conv11
relu11
conv12
relu12
tConv2
cat2
conv13
relu13
conv14
relu14
tConv3
cat3
conv15
relu15
conv16
relu16
tConv4
cat4
conv17
relu17
conv18
relu18
outputLayer
];
% 定义UNET网络的连接结构
connections = [
imageInputConnection(1, 'conv1')
convolution2dConnection(5, 5, 64, 'conv1', 'conv2')
convolution2dConnection(3, 3, 128, 'conv2', 'conv3')
convolution2dConnection(3, 3, 256, 'conv3', 'conv4')
convolution2dConnection(3, 3, 512, 'conv4', 'conv5')
convolution2dConnection(3, 3, 1024, 'conv5', 'conv6')
transposedConv2dConnection(2, 2, 512, 'conv6', 'tConv1')
concatenationConnection('pool4', 'tConv1', 'cat1/in2')
convolution2dConnection(3, 3, 512, 'cat1', 'conv11')
convolution2dConnection(3, 3, 512, 'conv11', 'conv12')
transposedConv2dConnection(2, 2, 256, 'conv12', 'tConv2')
concatenationConnection('pool3', 'tConv2', 'cat2/in2')
convolution2dConnection(3, 3, 256, 'cat2', 'conv13')
convolution2dConnection(3, 3, 256, 'conv13', 'conv14')
transposedConv2dConnection(2, 2, 128, 'conv14', 'tConv3')
concatenationConnection('pool2', 'tConv3', 'cat3/in2')
convolution2dConnection(3, 3, 128, 'cat3', 'conv15')
convolution2dConnection(3, 3, 128, 'conv15', 'conv16')
transposedConv2dConnection(2, 2, 64, 'conv16', 'tConv4')
concatenationConnection('pool1', 'tConv4', 'cat4/in2')
convolution2dConnection(3, 3, 64, 'cat4', 'conv17')
convolution2dConnection(3, 3, 64, 'conv17', 'conv18')
convolution2dConnection(1, 1, 1, 'conv18', 'output')
];
% 将网络结构和连接结构组装成DAG网络
lgraph = createLgraphUsingConnections(layers, connections);
% 展示UNET网络结构
plot(lgraph);
```
这个示例代码展示了如何使用MATLAB的深度学习工具箱中的函数定义一个简单的UNET网络结构和连接结构,并将它们组装成一个DAG网络。这个网络结构包含了多个跳跃连接,用于将低层次和高层次的特征信息结合起来,从而提高图像分割的准确性。
阅读全文