第二步:划分测试集和训练集 X_trainset, X_testset, y_trainset, y_testset = train_test_split(X, y, test_size=0.3, random_state=3) ######### Begin ######### #第三步:初始化决策树,criterion设置为信息熵 skullsTree = #第四步:训练一棵决策树 clf = skullsTree.fit()
时间: 2023-06-01 15:07:52 浏览: 104
这是在进行机器学习模型训练时的第二步,称为划分测试集和训练集,通过这个步骤可以将原始数据集分成两部分,一部分用来训练模型,另一部分用来评估模型。在这个代码中,train_test_split函数通过随机选取样本的方式,将原始数据集(X和y)划分成训练集(X_trainset和y_trainset)和测试集(X_testset和y_testset),其中测试集的大小占总样本数的30%。参数random_state=3表示随机数种子,保证每次运行得到的结果相同。
相关问题
from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier # 加载葡萄酒数据集 wine = load_wine() # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.3, random_state=42) # 初始化决策树模型 clf = DecisionTreeClassifier() # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # 输出准确率 print("7:3的准确率:", clf.score(X_test, y_test)) # 重新划分训练集和测试集,比例为3:1 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.25, random_state=42) # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred1 = clf.predict(X_test) # 输出准确率 print("3:1的准确率:", clf.score(X_test, y_test)) # 重新划分训练集和测试集,比例为4:1 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.2, random_state=42) # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred2 = clf.predict(X_test) # 输出准确率 print("4:1的准确率:", clf.score(X_test, y_test)) # 重新划分训练集和测试集,比例为9:1 X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.1, random_state=42) # 训练模型并预测测试集 clf.fit(X_train, y_train) y_pred3 = clf.predict(X_test) # 输出准确率 print("9:1的准确率:", clf.score(X_test, y_test))
好的,您已经提供了代码来计算每种数据集划分方式的准确率。现在,我会使用 Python 的 Matplotlib 库来绘制折线图,以显示这4种数据集划分方式的准确率。以下是绘制折线图的代码示例:
```python
import matplotlib.pyplot as plt
# 计算每种数据集划分方式的准确率
acc_73 = clf.score(X_test, y_test)
acc_31 = clf.score(X_test, y_test)
acc_41 = clf.score(X_test, y_test)
acc_91 = clf.score(X_test, y_test)
# 绘制折线图
plt.plot([7, 3], [acc_73, acc_73], label="7:3")
plt.plot([3, 1], [acc_31, acc_31], label="3:1")
plt.plot([4, 1], [acc_41, acc_41], label="4:1")
plt.plot([9, 1], [acc_91, acc_91], label="9:1")
# 添加图例和标签
plt.legend()
plt.xlabel("Training set size ratio")
plt.ylabel("Accuracy")
plt.title("Accuracy vs. Training set size ratio")
# 显示折线图
plt.show()
```
这段代码将会绘制一张折线图,其中 x 轴表示训练集和测试集的比例,y 轴表示准确率。每种比例对应一个点,用折线将这些点连接起来,从而形成折线图。图例会显示每个折线所代表的数据集划分方式。
帮我理解以下代码:##计算训练集和测试集的样本数 ##x_train.shape[0]表示训练数据集x_train的样本数量。其中,x_train是一个二维数组,第一维表示样本的数量,第二维表示每个样本的特征数量。因此,x_train.shape[0]就是获取x_train数组的第一维大小,即样本数量。 train_num,test_num = x_train.shape[0],x_test.shape[0] ##存储结果 second_level_train_set = np.zeros((train.num,)) second_level_test_set = np.zeros((test_num,)) test_nfolds_sets = np.zeros((test_num,n_folds)) ##K折交叉验证 kf = KFold(n_splits = n_folds) ##依次使用K折数据集训练数据 for i,(train_index,test_index)in enumerate(kf.split(x_train)): ##切分K折数据 x_tra,y_tra = x_train[train_index],y_train[train_index] x_tes,y_tes = x_train[test_index],y_train[test_index] ##训练数据 clf.fit(x_tra,y_tra) ##对训练集和测试集进行预测 second_level_train_set[test_index] = clf.predict(x_tst) test_nfolds_sets[:,i] = clf.predict(x_test) ##计算返回的均值 second_level_test_set[:] = test_nfolds_sets.mean(axis = 1) return second_level_train_test_set,second_level_test_set
这段代码实现的是Stacking中的第一步,即对基础模型进行K折交叉验证并生成元特征。具体来说,代码中首先计算了训练集和测试集的样本数,然后初始化了三个用于存储结果的数组。接下来,使用K折交叉验证对基础模型进行训练,并对训练集和测试集进行预测,将预测结果保存到相应的数组中。最后,计算了测试集预测结果的均值,并将训练集和测试集的元特征作为函数的返回值。
值得注意的是,代码中使用了一个循环来依次使用K折数据集训练数据,并将每一次的预测结果保存到对应的位置上。这里的clf指代的是一个基础模型,它在训练和预测时需要与具体的应用场景相关。另外,mean()函数用于计算测试集预测结果的均值。
阅读全文