Kernel ridge regression C++实现
时间: 2024-05-03 19:19:31 浏览: 125
以下是 Kernel ridge regression 的 C++ 实现示例:
```cpp
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
// 高斯核函数
double gaussian_kernel(double x, double y, double sigma) {
double diff = x - y;
return exp(-diff * diff / (2 * sigma * sigma));
}
// 计算带核函数的 Gram 矩阵
vector<vector<double>> compute_gram_matrix(const vector<double>& x, double sigma) {
int n = x.size();
vector<vector<double>> gram_matrix(n, vector<double>(n));
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
gram_matrix[i][j] = gaussian_kernel(x[i], x[j], sigma);
}
}
return gram_matrix;
}
// 计算 alpha
vector<double> compute_alpha(const vector<vector<double>>& gram_matrix, const vector<double>& y, double alpha) {
int n = gram_matrix.size();
vector<vector<double>> I(n, vector<double>(n));
for (int i = 0; i < n; i++) {
I[i][i] = 1;
}
vector<vector<double>> temp(n, vector<double>(n));
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
temp[i][j] = gram_matrix[i][j] + alpha * I[i][j];
}
}
// 求解线性方程组
vector<double> alpha_vec(n);
for (int i = 0; i < n; i++) {
double sum = 0;
for (int j = 0; j < n; j++) {
sum += temp[i][j] * y[j];
}
alpha_vec[i] = sum;
}
return alpha_vec;
}
// 预测
double predict(const vector<vector<double>>& gram_matrix, const vector<double>& alpha, double x, double sigma) {
double sum = 0;
int n = gram_matrix.size();
for (int i = 0; i < n; i++) {
sum += alpha[i] * gaussian_kernel(x, i, sigma);
}
return sum;
}
int main() {
// 构造数据集
vector<double> x = {1, 2, 3, 4, 5};
vector<double> y = {2, 3, 1, 5, 7};
// 计算带核函数的 Gram 矩阵
double sigma = 1;
vector<vector<double>> gram_matrix = compute_gram_matrix(x, sigma);
// 计算 alpha
double alpha = 0.1;
vector<double> alpha_vec = compute_alpha(gram_matrix, y, alpha);
// 预测
double x_test = 6;
double y_test = predict(gram_matrix, alpha_vec, x_test, sigma);
cout << "Predicted value: " << y_test << endl;
return 0;
}
```
以上代码实现了基于高斯核函数的 Kernel ridge regression,通过计算带核函数的 Gram 矩阵和求解线性方程组来确定 alpha,然后使用 alpha 进行预测。需要注意的是,Kernel ridge regression 的核函数可以是任意合法的核函数,这里只是提供了高斯核函数的实现。
阅读全文