Kernel ridge regression C++带类实现
时间: 2023-10-20 17:09:07 浏览: 316
以下是一个简单的Kernel ridge regression(核岭回归)实现,它使用C++类来实现。这个类包含了训练和预测方法。
```
#include <iostream>
#include <vector>
#include <cmath>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
class KernelRidgeRegression {
public:
KernelRidgeRegression(vector<vector<double>> X, vector<double> y, double alpha, string kernel_type, double gamma=1.0, double degree=3.0, double coef0=0.0);
void train();
double predict(vector<double> x);
private:
vector<vector<double>> X_;
vector<double> y_;
double alpha_;
string kernel_type_;
double gamma_;
double degree_;
double coef0_;
int n_samples_;
MatrixXd K_;
VectorXd alpha_hat_;
};
KernelRidgeRegression::KernelRidgeRegression(vector<vector<double>> X, vector<double> y, double alpha, string kernel_type, double gamma, double degree, double coef0) {
X_ = X;
y_ = y;
alpha_ = alpha;
kernel_type_ = kernel_type;
gamma_ = gamma;
degree_ = degree;
coef0_ = coef0;
n_samples_ = X.size();
}
void KernelRidgeRegression::train() {
K_ = MatrixXd(n_samples_, n_samples_);
if (kernel_type_ == "linear") {
for (int i = 0; i < n_samples_; i++) {
for (int j = 0; j < n_samples_; j++) {
K_(i, j) = inner_product(X_[i].begin(), X_[i].end(), X_[j].begin(), 0.0);
}
}
} else if (kernel_type_ == "poly") {
for (int i = 0; i < n_samples_; i++) {
for (int j = 0; j < n_samples_; j++) {
K_(i, j) = pow(gamma_ * inner_product(X_[i].begin(), X_[i].end(), X_[j].begin(), 0.0) + coef0_, degree_);
}
}
} else if (kernel_type_ == "rbf") {
for (int i = 0; i < n_samples_; i++) {
for (int j = 0; j < n_samples_; j++) {
K_(i, j) = exp(-gamma_ * pow(inner_product(X_[i].begin(), X_[i].end(), X_[j].begin(), 0.0), 2));
}
}
} else {
throw invalid_argument("Invalid kernel type");
}
alpha_hat_ = (K_ + alpha_ * MatrixXd::Identity(n_samples_, n_samples_)).colPivHouseholderQr().solve(VectorXd::Map(y_.data(), y_.size()));
}
double KernelRidgeRegression::predict(vector<double> x) {
VectorXd k(n_samples_);
if (kernel_type_ == "linear") {
for (int i = 0; i < n_samples_; i++) {
k(i) = inner_product(X_[i].begin(), X_[i].end(), x.begin(), 0.0);
}
} else if (kernel_type_ == "poly") {
for (int i = 0; i < n_samples_; i++) {
k(i) = pow(gamma_ * inner_product(X_[i].begin(), X_[i].end(), x.begin(), 0.0) + coef0_, degree_);
}
} else if (kernel_type_ == "rbf") {
for (int i = 0; i < n_samples_; i++) {
k(i) = exp(-gamma_ * pow(inner_product(X_[i].begin(), X_[i].end(), x.begin(), 0.0), 2));
}
} else {
throw invalid_argument("Invalid kernel type");
}
return (alpha_hat_.transpose() * k)(0);
}
```
这个实现使用了Eigen库来进行矩阵运算。在构造函数中传入训练数据X和y、正则化参数alpha、核函数类型(线性、多项式、高斯径向基函数)、核函数参数(如果需要)。
在train方法中,我们计算并存储核矩阵K,并使用QR分解求解alpha_hat。
在predict方法中,我们计算输入向量x和每个训练样本之间的核函数值k,然后计算预测值。
这个实现是一个简单的示例,你可以根据你的需要进行修改和扩展。
阅读全文