matlab中和python中np.max函数类似的函数
时间: 2024-05-04 15:18:51 浏览: 107
在Matlab中,和Python中的`np.max`函数类似的函数是`max`函数。`max`函数可以用于获取数组/矩阵中的最大值,用法如下:
```matlab
% 对于数组
a = [1, 2, 3, 4];
max_a = max(a);
% 对于矩阵
b = [1, 2, 3; 4, 5, 6; 7, 8, 9];
max_b = max(b);
```
需要注意的是,在Matlab中,`max`函数默认会返回数组/矩阵中每一列的最大值(如果是向量则返回向量的最大值),如果要获取整个数组/矩阵中的最大值,可以使用`max(max(a))`或者`max(a(:))`。
相关问题
import numpy as np import matplotlib.pyplot as plt # 光纤参数 core_radius = 5e-6 # 光纤芯径 cladding_radius = 125e-6 # 包层芯径 n_core = 1.45 # 光纤芯的折射率 n_cladding = 1.44 # 包层的折射率 alpha = 0.2 # 损耗系数 # 模式参数 m = 1 # 模式数 l = 0 # 角动量数 k = 2 * np.pi / 1.55e-6 # 波矢量 # 离散化 dr = 1e-7 # 径向离散化步长 dz = 1e-5 # 纵向离散化步长 r_max = 2 * core_radius # 最大径向范围 z_max = 1e-3 # 最大纵向范围 nr = int(r_max / dr) + 1 # 径向离散化数 nz = int(z_max / dz) + 1 # 纵向离散化数 # 初始化 r = np.linspace(0, r_max, nr) z = np.linspace(0, z_max, nz) E = np.zeros((nr, nz), dtype=complex) # 边界条件 E[:, 0] = np.exp(1j * k * r) # 入射光线 E[:, -1] = 0 # 输出面边界条件 # 模式初值 w = np.sqrt(2 / np.pi) * np.exp(-r ** 2 / core_radius ** 2) w *= np.sqrt((2 * l + 1) / (2 * np.pi * m * core_radius ** 2)) w /= np.sqrt(np.sum(np.abs(w) ** 2) * dr) E[:, 1] = w # 数值求解 for i in range(1, nz - 1): # 径向二阶导数 d2Edr2 = (E[2:, i] - 2 * E[1:-1, i] + E[:-2, i]) / dr ** 2 # 纵向一阶导数 dEdz = (E[:, i + 1] - E[:, i]) / dz # 光学传输方程 E[1:-1, i + 1] = E[1:-1, i] + dz * ( (1j * k * n_core) ** 2 * E[1:-1, i] - (1 / core_radius ** 2 + alpha / 2) * E[1:-1, i] - ( n_core ** 2 - n_cladding ** 2) * d2Edr2 / k ** 2 - 2 * 1j * k * dEdz / (m * core_radius ** 2)) # 绘图 plt.imshow(np.abs(E) ** 2, extent=(0, z_max, r_max, 0), aspect='auto') plt.xlabel('z / m') plt.ylabel('r / m') plt.colorbar() plt.show()
以下是将Python代码转换为MATLAB代码的结果:
```matlab
% 光纤参数
core_radius = 5e-6; % 光纤芯径
cladding_radius = 125e-6; % 包层芯径
n_core = 1.45; % 光纤芯的折射率
n_cladding = 1.44; % 包层的折射率
alpha = 0.2; % 损耗系数
% 模式参数
m = 1; % 模式数
l = 0; % 角动量数
k = 2 * pi / 1.55e-6; % 波矢量
% 离散化
dr = 1e-7; % 径向离散化步长
dz = 1e-5; % 纵向离散化步长
r_max = 2 * core_radius; % 最大径向范围
z_max = 1e-3; % 最大纵向范围
nr = round(r_max / dr) + 1; % 径向离散化数
nz = round(z_max / dz) + 1; % 纵向离散化数
% 初始化
r = linspace(0, r_max, nr);
z = linspace(0, z_max, nz);
E = complex(zeros(nr, nz));
% 边界条件
E(:, 1) = exp(1j * k * r); % 入射光线
E(:, end) = 0; % 输出面边界条件
% 模式初值
w = sqrt(2 / pi) * exp(-r.^2 / core_radius^2);
w = w .* sqrt((2 * l + 1) / (2 * pi * m * core_radius^2));
w = w ./ sqrt(sum(abs(w).^2) * dr);
E(:, 2) = w;
% 数值求解
for i = 2:nz-1
% 径向二阶导数
d2Edr2 = (E(3:end, i) - 2 * E(2:end-1, i) + E(1:end-2, i)) / dr^2;
% 纵向一阶导数
dEdz = (E(:, i+1) - E(:, i)) / dz;
% 光学传输方程
E(2:end-1, i+1) = E(2:end-1, i) + dz * (...
(1j * k * n_core)^2 * E(2:end-1, i) - (1 / core_radius^2 + alpha / 2) * E(2:end-1, i) - ...
(n_core^2 - n_cladding^2) * d2Edr2 / k^2 - 2 * 1j * k * dEdz / (m * core_radius^2));
end
% 绘图
imagesc([0 z_max], [0 r_max], abs(E).^2);
xlabel('z / m');
ylabel('r / m');
colorbar;
```
注意,在MATLAB中,我们需要使用`round`函数将离散化数`nr`和`nz`转换为整数。此外,在MATLAB中,使用`.`运算符表示逐元素乘法和逐元素除法。最后,图像函数`imshow`在MATLAB中需要改为`imagesc`函数。
将下列代码转换为matlab格式: from sklearn.model_selection import train_test_split train_x, test_x, train_y, test_y = train_test_split(np.array(data.iloc[:, [3,4,5,6,7,9,10,11,12,13,14,15]]), np.array(data.iloc[:, [5]]), test_size = 0.3) import xgboost as xgb from xgboost import plot_importance model = xgb.XGBRegressor(silent = 0, learning_rate = 0.05, eta = 0.1, gamma = 0.25, max_depth = 24, reg_lambda = 2, reg_alpha = 1, n_estimators = 300, seed = 999, objective ='reg:squarederror') model.fit(train_x, train_y, eval_metric = "rmse", eval_set = [(train_x, train_y), (test_x, test_y)], verbose = True)
以下是将给定的 Python 代码转换为 MATLAB 代码的示例:
```matlab
% 加载数据
data = readtable('data.csv');
train_x = table2array(data(:, [4,5,6,7,8,10,11,12,13,14,15,16]));
train_y = table2array(data(:, [6]));
% 拆分数据集
rng(42); % 设定随机数种子
[test_x, train_x, test_y, train_y] = split_data(train_x, train_y, 0.3);
% 训练 XGBoost 模型
model = xgboost;
model.silent = 0;
model.learning_rate = 0.05;
model.eta = 0.1;
model.gamma = 0.25;
model.max_depth = 24;
model.reg_lambda = 2;
model.reg_alpha = 1;
model.n_estimators = 300;
model.seed = 999;
model.objective = 'reg:squarederror';
% 训练模型并进行评估
model = fit(model, train_x, train_y, 'eval_set', [train_x, train_y; test_x, test_y], 'eval_metric', 'rmse', 'verbose', true);
```
在这个示例中,我们首先使用 `readtable` 函数加载数据。然后,我们将输入和输出变量分别存储在 `train_x` 和 `train_y` 中。接下来,我们使用 `split_data` 函数将数据集拆分为训练集和测试集。最后,我们定义了 XGBoost 模型的各种超参数,并使用 `fit` 函数进行训练和评估。
阅读全文
相关推荐














