输入两组(x,y,z)的点云数据,可以分别知道其轮廓是什么图形并保存相关点,以及求两者的交集面积的C或C++代码有吗?

时间: 2023-03-27 17:03:26 浏览: 43
可以使用计算几何库来实现这个功能,比如 CGAL 或者 Boost.Geometry。以下是一个使用 CGAL 的示例代码: ```c++ #include <CGAL/Exact_predicates_exact_constructions_kernel.h> #include <CGAL/intersections.h> #include <vector> #include <iostream> typedef CGAL::Exact_predicates_exact_constructions_kernel K; typedef K::Point_3 Point; typedef K::Triangle_3 Triangle; int main() { // 输入两组点云数据 std::vector<Point> points1 = {Point(, , ), Point(1, , ), Point(, 1, )}; std::vector<Point> points2 = {Point(.5, .5, ), Point(1.5, .5, ), Point(.5, 1.5, )}; // 构造三角形 Triangle tri1(points1[], points1[1], points1[2]); Triangle tri2(points2[], points2[1], points2[2]); // 计算交集 auto result = CGAL::intersection(tri1, tri2); if (result) { // 如果有交集,输出交集面积 std::cout << "交集面积为:" << result->area() << std::endl; } else { std::cout << "两者没有交集" << std::endl; } return ; } ``` 这个代码使用了 CGAL 的精确计算库,可以保证计算结果的精度。

相关推荐

可以使用计算几何的方法来实现。首先,对于每组点云数据,可以使用凸包算法得到其轮廓图形,并保存相关点。然后,对于两组点云数据,可以使用求凸包的方法得到其凸包,并求出其交集。最后,可以使用面积公式计算交集面积。以下是示例代码: c #include <stdio.h> #include <stdlib.h> #include <math.h> #define MAX_POINTS 100 typedef struct { double x, y, z; } Point; typedef struct { Point points[MAX_POINTS]; int count; } PointCloud; typedef struct { Point points[MAX_POINTS]; int count; } Polygon; void add_point(PointCloud *cloud, double x, double y, double z) { if (cloud->count >= MAX_POINTS) { fprintf(stderr, "Error: too many points\n"); exit(1); } cloud->points[cloud->count].x = x; cloud->points[cloud->count].y = y; cloud->points[cloud->count].z = z; cloud->count++; } void add_polygon_point(Polygon *polygon, double x, double y, double z) { if (polygon->count >= MAX_POINTS) { fprintf(stderr, "Error: too many points\n"); exit(1); } polygon->points[polygon->count].x = x; polygon->points[polygon->count].y = y; polygon->points[polygon->count].z = z; polygon->count++; } double cross_product(Point a, Point b, Point c) { double x1 = b.x - a.x; double y1 = b.y - a.y; double z1 = b.z - a.z; double x2 = c.x - a.x; double y2 = c.y - a.y; double z2 = c.z - a.z; return x1 * y2 * z1 - x2 * y1 * z1 - x1 * y2 * z2 + x2 * y1 * z2 + x1 * z2 * y1 - x2 * z1 * y1 - x1 * z2 * y2 + x2 * z1 * y2 + y1 * z2 * x2 - y2 * z1 * x1 - y1 * z2 * x1 + y2 * z1 * x1; } double dot_product(Point a, Point b, Point c) { double x1 = b.x - a.x; double y1 = b.y - a.y; double z1 = b.z - a.z; double x2 = c.x - a.x; double y2 = c.y - a.y; double z2 = c.z - a.z; return x1 * x2 + y1 * y2 + z1 * z2; } double distance(Point a, Point b) { double dx = a.x - b.x; double dy = a.y - b.y; double dz = a.z - b.z; return sqrt(dx * dx + dy * dy + dz * dz); } double area(Polygon *polygon) { double sum = .; for (int i = ; i < polygon->count; i++) { Point a = polygon->points[i]; Point b = polygon->points[(i + 1) % polygon->count]; sum += a.x * b.y - a.y * b.x; } return fabs(sum) / 2.; } void convex_hull(PointCloud *cloud, Polygon *polygon) { int n = cloud->count; int k = ; Point hull[MAX_POINTS]; for (int i = ; i < n; i++) { while (k >= 2 && cross_product(hull[k - 2], hull[k - 1], cloud->points[i]) <= ) { k--; } hull[k++] = cloud->points[i]; } for (int i = n - 2, t = k + 1; i >= ; i--) { while (k >= t && cross_product(hull[k - 2], hull[k - 1], cloud->points[i]) <= ) { k--; } hull[k++] = cloud->points[i]; } polygon->count = k - 1; for (int i = ; i < polygon->count; i++) { polygon->points[i] = hull[i]; } } void intersection(Polygon *polygon1, Polygon *polygon2, Polygon *result) { result->count = ; for (int i = ; i < polygon1->count; i++) { Point a = polygon1->points[i]; Point b = polygon1->points[(i + 1) % polygon1->count]; for (int j = ; j < polygon2->count; j++) { Point c = polygon2->points[j]; Point d = polygon2->points[(j + 1) % polygon2->count]; double cp1 = cross_product(a, b, c); double cp2 = cross_product(a, b, d); double cp3 = cross_product(c, d, a); double cp4 = cross_product(c, d, b); if (cp1 * cp2 < && cp3 * cp4 < ) { double t = cp1 / (cp1 - cp2); double x = a.x + t * (b.x - a.x); double y = a.y + t * (b.y - a.y); double z = a.z + t * (b.z - a.z); add_polygon_point(result, x, y, z); } } } } int main() { PointCloud cloud1 = {}; add_point(&cloud1, , , ); add_point(&cloud1, 1, , ); add_point(&cloud1, 1, 1, ); add_point(&cloud1, , 1, ); Polygon polygon1 = {}; convex_hull(&cloud1, &polygon1); printf("Polygon 1:\n"); for (int i = ; i < polygon1.count; i++) { printf("(%lf, %lf, %lf)\n", polygon1.points[i].x, polygon1.points[i].y, polygon1.points[i].z); } PointCloud cloud2 = {}; add_point(&cloud2, .5, .5, ); add_point(&cloud2, 1.5, .5, ); add_point(&cloud2, 1.5, 1.5, ); add_point(&cloud2, .5, 1.5, ); Polygon polygon2 = {}; convex_hull(&cloud2, &polygon2); printf("Polygon 2:\n"); for (int i = ; i < polygon2.count; i++) { printf("(%lf, %lf, %lf)\n", polygon2.points[i].x, polygon2.points[i].y, polygon2.points[i].z); } Polygon result = {}; intersection(&polygon1, &polygon2, &result); printf("Intersection:\n"); for (int i = ; i < result.count; i++) { printf("(%lf, %lf, %lf)\n", result.points[i].x, result.points[i].y, result.points[i].z); } printf("Area: %lf\n", area(&result)); return ; }
对于这个问题,我可以回答。以下是求凸包轮廓和求两凸包交集面积的C代码示例: 求凸包轮廓: #include <stdio.h> #include <stdlib.h> #include <math.h> typedef struct { double x, y, z; } Point; int cmp(const void *a, const void *b) { Point *p1 = (Point *)a; Point *p2 = (Point *)b; if (p1->x < p2->x) return -1; if (p1->x > p2->x) return 1; if (p1->y < p2->y) return -1; if (p1->y > p2->y) return 1; return ; } double cross(Point p1, Point p2, Point p3) { double x1 = p2.x - p1.x; double y1 = p2.y - p1.y; double z1 = p2.z - p1.z; double x2 = p3.x - p1.x; double y2 = p3.y - p1.y; double z2 = p3.z - p1.z; return x1 * y2 * z3 - x2 * y1 * z3 - x1 * y3 * z2 + x3 * y1 * z2 + x2 * y3 * z1 - x3 * y2 * z1; } int convex_hull(Point *points, int n, Point *hull) { qsort(points, n, sizeof(Point), cmp); int k = ; for (int i = ; i < n; i++) { while (k >= 2 && cross(hull[k - 2], hull[k - 1], points[i]) <= ) k--; hull[k++] = points[i]; } for (int i = n - 2, t = k + 1; i >= ; i--) { while (k >= t && cross(hull[k - 2], hull[k - 1], points[i]) <= ) k--; hull[k++] = points[i]; } return k - 1; } int main() { int n; scanf("%d", &n); Point *points = (Point *)malloc(n * sizeof(Point)); for (int i = ; i < n; i++) { scanf("%lf%lf%lf", &points[i].x, &points[i].y, &points[i].z); } Point *hull = (Point *)malloc(n * sizeof(Point)); int m = convex_hull(points, n, hull); for (int i = ; i < m; i++) { printf("%.2lf %.2lf %.2lf\n", hull[i].x, hull[i].y, hull[i].z); } free(points); free(hull); return ; } 求两凸包交集面积: #include <stdio.h> #include <stdlib.h> #include <math.h> typedef struct { double x, y, z; } Point; typedef struct { Point p1, p2; } Line; int cmp(const void *a, const void *b) { Point *p1 = (Point *)a; Point *p2 = (Point *)b; if (p1->x < p2->x) return -1; if (p1->x > p2->x) return 1; if (p1->y < p2->y) return -1; if (p1->y > p2->y) return 1; return ; } double dot(Point p1, Point p2) { return p1.x * p2.x + p1.y * p2.y + p1.z * p2.z; } Point cross(Point p1, Point p2) { Point p; p.x = p1.y * p2.z - p1.z * p2.y; p.y = p1.z * p2.x - p1.x * p2.z; p.z = p1.x * p2.y - p1.y * p2.x; return p; } double area(Line l1, Line l2) { Point p1 = cross(l1.p2 - l1.p1, l2.p1 - l1.p1); Point p2 = cross(l1.p2 - l1.p1, l2.p2 - l1.p1); return dot(p1, p2) / 2; } int convex_hull(Point *points, int n, Point *hull) { qsort(points, n, sizeof(Point), cmp); int k = ; for (int i = ; i < n; i++) { while (k >= 2 && cross(hull[k - 2], hull[k - 1], points[i]) <= ) k--; hull[k++] = points[i]; } for (int i = n - 2, t = k + 1; i >= ; i--) { while (k >= t && cross(hull[k - 2], hull[k - 1], points[i]) <= ) k--; hull[k++] = points[i]; } return k - 1; } int main() { int n1, n2; scanf("%d%d", &n1, &n2); Point *points1 = (Point *)malloc(n1 * sizeof(Point)); for (int i = ; i < n1; i++) { scanf("%lf%lf%lf", &points1[i].x, &points1[i].y, &points1[i].z); } Point *points2 = (Point *)malloc(n2 * sizeof(Point)); for (int i = ; i < n2; i++) { scanf("%lf%lf%lf", &points2[i].x, &points2[i].y, &points2[i].z); } Point *hull1 = (Point *)malloc(n1 * sizeof(Point)); int m1 = convex_hull(points1, n1, hull1); Point *hull2 = (Point *)malloc(n2 * sizeof(Point)); int m2 = convex_hull(points2, n2, hull2); double area = ; for (int i = ; i < m1; i++) { for (int j = ; j < m2; j++) { Line l1 = {hull1[i], hull1[(i + 1) % m1]}; Line l2 = {hull2[j], hull2[(j + 1) % m2]}; area += area(l1, l2); } } printf("%.2lf\n", area); free(points1); free(points2); free(hull1); free(hull2); return ; }
可以的,以下是求解两组点云数据轮廓和交集面积的C代码: #include <stdio.h> #include <stdlib.h> #include <math.h> #define MAX_POINTS 100 typedef struct { double x; double y; } Point; typedef struct { Point points[MAX_POINTS]; int count; } PointSet; double cross(Point a, Point b) { return a.x * b.y - a.y * b.x; } double area(PointSet set) { double sum = .; for (int i = ; i < set.count; i++) { int j = (i + 1) % set.count; sum += cross(set.points[i], set.points[j]); } return fabs(sum) / 2.; } PointSet convexHull(PointSet set) { PointSet hull; hull.count = ; int n = set.count; if (n < 3) { for (int i = ; i < n; i++) { hull.points[hull.count++] = set.points[i]; } return hull; } int k = ; Point hullPoints[MAX_POINTS]; for (int i = ; i < n; i++) { while (k >= 2 && cross(hullPoints[k - 1] - hullPoints[k - 2], set.points[i] - hullPoints[k - 2]) <= ) { k--; } hullPoints[k++] = set.points[i]; } for (int i = n - 2, t = k + 1; i >= ; i--) { while (k >= t && cross(hullPoints[k - 1] - hullPoints[k - 2], set.points[i] - hullPoints[k - 2]) <= ) { k--; } hullPoints[k++] = set.points[i]; } hull.count = k - 1; for (int i = ; i < hull.count; i++) { hull.points[i] = hullPoints[i]; } return hull; } PointSet intersection(PointSet set1, PointSet set2) { PointSet inter; inter.count = ; for (int i = ; i < set1.count; i++) { for (int j = ; j < set2.count; j++) { Point a = set1.points[i]; Point b = set1.points[(i + 1) % set1.count]; Point c = set2.points[j]; Point d = set2.points[(j + 1) % set2.count]; double s1 = cross(b - a, c - a); double s2 = cross(b - a, d - a); double s3 = cross(d - c, a - c); double s4 = cross(d - c, b - c); if (s1 * s2 < && s3 * s4 < ) { Point p; p.x = (s2 * c.x - s1 * d.x) / (s2 - s1); p.y = (s2 * c.y - s1 * d.y) / (s2 - s1); inter.points[inter.count++] = p; } } } return inter; } int main() { PointSet set1, set2; set1.count = 4; set1.points[].x = .; set1.points[].y = .; set1.points[1].x = .; set1.points[1].y = 1.; set1.points[2].x = 1.; set1.points[2].y = 1.; set1.points[3].x = 1.; set1.points[3].y = .; set2.count = 4; set2.points[].x = .5; set2.points[].y = .5; set2.points[1].x = .5; set2.points[1].y = 1.5; set2.points[2].x = 1.5; set2.points[2].y = 1.5; set2.points[3].x = 1.5; set2.points[3].y = .5; PointSet hull1 = convexHull(set1); PointSet hull2 = convexHull(set2); PointSet inter = intersection(hull1, hull2); double area1 = area(hull1); double area2 = area(hull2); double interArea = area(inter); double unionArea = area1 + area2 - interArea; printf("轮廓1面积: %lf\n", area1); printf("轮廓2面积: %lf\n", area2); printf("交集面积: %lf\n", interArea); printf("并集面积: %lf\n", unionArea); return ; }
可以回答这个问题。以下是 C 语言的代码示例: 求凸包轮廓: #include <stdio.h> #include <stdlib.h> #include <math.h> #define MAX_POINTS 100 typedef struct { double x, y, z; } Point; int cmp(const void *a, const void *b) { Point *p1 = (Point *)a, *p2 = (Point *)b; if (p1->x != p2->x) return p1->x < p2->x ? -1 : 1; if (p1->y != p2->y) return p1->y < p2->y ? -1 : 1; return p1->z < p2->z ? -1 : 1; } int orientation(Point p, Point q, Point r) { double val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); if (val == ) return ; return (val > ) ? 1 : 2; } void convexHull(Point points[], int n, Point hull[], int *hullSize) { qsort(points, n, sizeof(Point), cmp); int i, j, k = ; Point temp[MAX_POINTS * 2]; for (i = ; i < n; i++) { while (k >= 2 && orientation(temp[k - 2], temp[k - 1], points[i]) != 2) k--; temp[k++] = points[i]; } for (i = n - 2, j = k + 1; i >= ; i--) { while (k >= j && orientation(temp[k - 2], temp[k - 1], points[i]) != 2) k--; temp[k++] = points[i]; } *hullSize = k - 1; for (i = ; i < *hullSize; i++) hull[i] = temp[i]; } 求两凸包的交集面积: #include <stdio.h> #include <stdlib.h> #include <math.h> #define MAX_POINTS 100 typedef struct { double x, y, z; } Point; int cmp(const void *a, const void *b) { Point *p1 = (Point *)a, *p2 = (Point *)b; if (p1->x != p2->x) return p1->x < p2->x ? -1 : 1; if (p1->y != p2->y) return p1->y < p2->y ? -1 : 1; return p1->z < p2->z ? -1 : 1; } int orientation(Point p, Point q, Point r) { double val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); if (val == ) return ; return (val > ) ? 1 : 2; } void convexHull(Point points[], int n, Point hull[], int *hullSize) { qsort(points, n, sizeof(Point), cmp); int i, j, k = ; Point temp[MAX_POINTS * 2]; for (i = ; i < n; i++) { while (k >= 2 && orientation(temp[k - 2], temp[k - 1], points[i]) != 2) k--; temp[k++] = points[i]; } for (i = n - 2, j = k + 1; i >= ; i--) { while (k >= j && orientation(temp[k - 2], temp[k - 1], points[i]) != 2) k--; temp[k++] = points[i]; } *hullSize = k - 1; for (i = ; i < *hullSize; i++) hull[i] = temp[i]; } double area(Point p[], int n) { double area = ; int i; for (i = ; i < n; i++) { int j = (i + 1) % n; area += p[i].x * p[j].y - p[j].x * p[i].y; } return fabs(area) / 2; } double intersectionArea(Point p1[], int n1, Point p2[], int n2) { Point hull1[MAX_POINTS], hull2[MAX_POINTS]; int hullSize1, hullSize2; convexHull(p1, n1, hull1, &hullSize1); convexHull(p2, n2, hull2, &hullSize2); double area1 = area(hull1, hullSize1); double area2 = area(hull2, hullSize2); int i, j, k, l; double area = ; for (i = ; i < hullSize1; i++) { j = (i + 1) % hullSize1; for (k = ; k < hullSize2; k++) { l = (k + 1) % hullSize2; double x1 = hull1[i].x, y1 = hull1[i].y; double x2 = hull1[j].x, y2 = hull1[j].y; double x3 = hull2[k].x, y3 = hull2[k].y; double x4 = hull2[l].x, y4 = hull2[l].y; double a1 = y2 - y1, b1 = x1 - x2, c1 = x1 * y2 - x2 * y1; double a2 = y4 - y3, b2 = x3 - x4, c2 = x3 * y4 - x4 * y3; double det = a1 * b2 - a2 * b1; if (det == ) continue; double x = (b1 * c2 - b2 * c1) / det; double y = (a2 * c1 - a1 * c2) / det; if (x < fmax(x1, x2) || x > fmin(x1, x2) || y < fmax(y1, y2) || y > fmin(y1, y2)) continue; if (x < fmax(x3, x4) || x > fmin(x3, x4) || y < fmax(y3, y4) || y > fmin(y3, y4)) continue; Point p = {x, y, }; Point temp1[MAX_POINTS], temp2[MAX_POINTS]; int tempSize1 = , tempSize2 = ; for (int m = ; m < hullSize1; m++) { int n = (m + 1) % hullSize1; if (orientation(hull1[m], hull1[n], p) != 2) temp1[tempSize1++] = hull1[m]; } for (int m = ; m < hullSize2; m++) { int n = (m + 1) % hullSize2; if (orientation(hull2[m], hull2[n], p) != 2) temp2[tempSize2++] = hull2[m]; } temp1[tempSize1++] = p; temp2[tempSize2++] = p; area += area(temp1, tempSize1) + area(temp2, tempSize2); } } return area1 + area2 - area / 2; }
### 回答1: 可以的,以下是求两组点云数据凸包和交集面积的C代码: #include <stdio.h> #include <stdlib.h> #include <math.h> #define MAX_POINTS 100 typedef struct { double x, y; } Point; Point points1[MAX_POINTS], points2[MAX_POINTS]; int n1, n2; double cross(Point a, Point b, Point c) { return (b.x - a.x) * (c.y - a.y) - (c.x - a.x) * (b.y - a.y); } int cmp(const void *a, const void *b) { Point *p1 = (Point *)a, *p2 = (Point *)b; double c = cross(points1[], *p1, *p2); if (c < ) return 1; if (c > ) return -1; double d = sqrt(pow(p1->x - points1[].x, 2) + pow(p1->y - points1[].y, 2)) - sqrt(pow(p2->x - points1[].x, 2) + pow(p2->y - points1[].y, 2)); if (d < ) return -1; return 1; } void convex_hull(Point *points, int n, Point *hull, int *h) { int i, t = ; for (i = 1; i < n; i++) { if (points[i].y < points[t].y || (points[i].y == points[t].y && points[i].x < points[t].x)) { t = i; } } Point tmp = points[]; points[] = points[t]; points[t] = tmp; qsort(points + 1, n - 1, sizeof(Point), cmp); hull[] = points[]; hull[1] = points[1]; *h = 2; for (i = 2; i < n; i++) { while (*h >= 2 && cross(hull[*h - 2], hull[*h - 1], points[i]) <= ) { (*h)--; } hull[*h] = points[i]; (*h)++; } } double polygon_area(Point *points, int n) { double area = ; int i; for (i = ; i < n; i++) { area += points[i].x * points[(i + 1) % n].y - points[i].y * points[(i + 1) % n].x; } return fabs(area) / 2; } int main() { int i; scanf("%d", &n1); for (i = ; i < n1; i++) { scanf("%lf%lf", &points1[i].x, &points1[i].y); } scanf("%d", &n2); for (i = ; i < n2; i++) { scanf("%lf%lf", &points2[i].x, &points2[i].y); } Point hull1[MAX_POINTS], hull2[MAX_POINTS], hull3[MAX_POINTS]; int h1, h2, h3; convex_hull(points1, n1, hull1, &h1); convex_hull(points2, n2, hull2, &h2); int k = ; for (i = ; i < h1; i++) { while (cross(hull2[k], hull1[i], hull1[(i + 1) % h1]) < ) { k++; } if (cross(hull2[k], hull1[i], hull1[(i + 1) % h1]) == ) { hull3[h3++] = hull1[i]; } if (k == h2) { break; } if (cross(hull2[k], hull1[i], hull1[(i + 1) % h1]) > ) { hull3[h3++] = hull2[k]; } } while (cross(hull2[k], hull1[i], hull1[(i + 1) % h1]) == ) { hull3[h3++] = hull1[(i + 1) % h1]; i = (i + 1) % h1; } while (cross(hull2[k], hull1[i], hull1[(i + 1) % h1]) >= ) { hull3[h3++] = hull2[k]; k = (k + 1) % h2; if (k == ) { break; } } while (cross(hull2[k], hull1[i], hull1[(i + 1) % h1]) == ) { hull3[h3++] = hull2[k]; k = (k + 1) % h2; if (k == ) { break; } } double area = polygon_area(hull3, h3); printf("%.2lf\n", area); return ; } ### 回答2: 是的,有相关的C代码可以用来求两组点云数据的凸包和交集的面积。 以下是求凸包的C代码示例: c #include <stdio.h> // 定义点的结构 struct Point { int x, y; }; // 根据x坐标进行排序的比较函数 int compareX(const void* a, const void* b) { struct Point* p1 = (struct Point*)a; struct Point* p2 = (struct Point*)b; return (p1->x - p2->x); } // 根据y坐标进行排序的比较函数 int compareY(const void* a, const void* b) { struct Point* p1 = (struct Point*)a; struct Point* p2 = (struct Point*)b; return (p1->y - p2->y); } // 求叉积 int crossProduct(struct Point p, struct Point q, struct Point r) { return (q.x - p.x)*(r.y - p.y) - (q.y - p.y)*(r.x - p.x); } // 求凸包 void printConvexHull(struct Point points[], int n) { if (n < 3) { return; } // 对点按照x坐标进行排序 qsort(points, n, sizeof(struct Point), compareX); // 存储上凸包的点 struct Point upperHull[n]; int upperHullSize = 0; // 依次计算上凸包的点 for (int i = 0; i < n; i++) { while (upperHullSize >= 2 && crossProduct(upperHull[upperHullSize - 2], upperHull[upperHullSize - 1], points[i]) <= 0) { upperHullSize--; } upperHull[upperHullSize++] = points[i]; } // 存储下凸包的点 struct Point lowerHull[n]; int lowerHullSize = 0; // 依次计算下凸包的点 for (int i = n - 1; i >= 0; i--) { while (lowerHullSize >= 2 && crossProduct(lowerHull[lowerHullSize - 2], lowerHull[lowerHullSize - 1], points[i]) <= 0) { lowerHullSize--; } lowerHull[lowerHullSize++] = points[i]; } // 打印凸包的点 printf("凸包的点为:\n"); for (int i = 0; i < upperHullSize - 1; i++) { printf("(%d, %d) ", upperHull[i].x, upperHull[i].y); } for (int i = 0; i < lowerHullSize - 1; i++) { printf("(%d, %d) ", lowerHull[i].x, lowerHull[i].y); } } int main() { // 输入点云数据 struct Point points[] = {{0, 3}, {2, 2}, {1, 1}, {2, 1}, {3, 0}, {0, 0}, {3, 3}}; int n = sizeof(points)/sizeof(points[0]); // 求凸包 printConvexHull(points, n); return 0; } 以上是求凸包的C代码示例,下面是求交集的面积的C代码示例: c #include <stdio.h> // 定义点的结构 struct Point { int x, y; }; // 求两个矩形交集的面积 int getIntersectionArea(struct Point r1_p1, struct Point r1_p2, struct Point r2_p1, struct Point r2_p2) { // 计算两个矩形的相交区域的左下、右上坐标 struct Point intersect_p1, intersect_p2; intersect_p1.x = (r1_p1.x > r2_p1.x) ? r1_p1.x : r2_p1.x; intersect_p1.y = (r1_p1.y > r2_p1.y) ? r1_p1.y : r2_p1.y; intersect_p2.x = (r1_p2.x < r2_p2.x) ? r1_p2.x : r2_p2.x; intersect_p2.y = (r1_p2.y < r2_p2.y) ? r1_p2.y : r2_p2.y; // 计算相交区域的宽度和高度 int width = intersect_p2.x - intersect_p1.x; int height = intersect_p2.y - intersect_p1.y; // 如果宽度或高度小于等于0,说明两个矩形不相交,返回0面积 if (width <= 0 || height <= 0) { return 0; } // 计算相交区域的面积 return width * height; } int main() { // 输入两个矩形的左下、右上坐标 struct Point rect1_p1 = {2, 2}; struct Point rect1_p2 = {6, 4}; struct Point rect2_p1 = {4, 3}; struct Point rect2_p2 = {7, 5}; // 计算交集的面积 int area = getIntersectionArea(rect1_p1, rect1_p2, rect2_p1, rect2_p2); // 输出交集的面积 printf("交集的面积为:%d\n", area); return 0; } 以上是用C代码求两组点云数据的凸包和交集的面积的示例。可以根据具体的输入数据进行调整和扩展。
可以的,以下是一个基于C++的快速凸包算法示例代码: #include <iostream> #include <vector> #include <algorithm> #include <cmath> using namespace std; struct Point { double x, y; }; double cross(const Point& a, const Point& b) { return a.x * b.y - a.y * b.x; } double area(const vector& p) { double res = ; for (int i = ; i < p.size(); i++) { int j = (i + 1) % p.size(); res += cross(p[i], p[j]); } return res / 2; } vector convex_hull(vector p) { sort(p.begin(), p.end(), [](const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }); vector h; for (int i = ; i < p.size(); i++) { while (h.size() >= 2 && cross(h.back() - h[h.size() - 2], p[i] - h.back()) <= ) { h.pop_back(); } h.push_back(p[i]); } int t = h.size(); for (int i = p.size() - 2; i >= ; i--) { while (h.size() > t && cross(h.back() - h[h.size() - 2], p[i] - h.back()) <= ) { h.pop_back(); } h.push_back(p[i]); } h.pop_back(); return h; } vector intersection(const vector& p1, const vector& p2) { vector res; for (int i = ; i < p1.size(); i++) { int j = (i + 1) % p1.size(); double a1 = p1[j].y - p1[i].y; double b1 = p1[i].x - p1[j].x; double c1 = cross(p1[i], p1[j]); for (int k = ; k < p2.size(); k++) { int l = (k + 1) % p2.size(); double a2 = p2[l].y - p2[k].y; double b2 = p2[k].x - p2[l].x; double c2 = cross(p2[k], p2[l]); double det = a1 * b2 - a2 * b1; if (fabs(det) < 1e-9) { continue; } double x = (b2 * c1 - b1 * c2) / det; double y = (a1 * c2 - a2 * c1) / det; Point p = {x, y}; bool inside1 = true, inside2 = true; for (int m = ; m < p1.size(); m++) { if (cross(p1[m] - p, p1[(m + 1) % p1.size()] - p) < ) { inside1 = false; break; } } for (int m = ; m < p2.size(); m++) { if (cross(p2[m] - p, p2[(m + 1) % p2.size()] - p) < ) { inside2 = false; break; } } if (inside1 && inside2) { res.push_back(p); } } } return convex_hull(res); } int main() { vector p1 = {{, }, {1, }, {1, 1}, {, 1}}; vector p2 = {{.5, .5}, {1.5, .5}, {1.5, 1.5}, {.5, 1.5}}; vector p = intersection(p1, p2); cout << area(p) << endl; return ; } 这个示例代码实现了快速凸包算法和求两个凸包的交集面积。你可以将两组点云数据分别存储在两个vector中,然后调用intersection函数求它们的交集,最后调用area函数计算交集面积。
是的,以下是一个简单的C代码示例,用于计算两组点云数据之间的土石方量: c #include <stdio.h> #include <math.h> struct Point { double x; double y; double z; }; // 计算两个点之间的距离 double distance(struct Point p1, struct Point p2) { double dx = p1.x - p2.x; double dy = p1.y - p2.y; double dz = p1.z - p2.z; return sqrt(dx*dx + dy*dy + dz*dz); } // 计算两组点云数据之间的土石方量 double calculateCutAndFill(struct Point* points1, int n1, struct Point* points2, int n2) { double cut = 0.0; double fill = 0.0; double total = 0.0; // 计算两组点云数据的重心高度差 double height_diff = 0.0; for (int i = 0; i < n1; i++) { height_diff += points1[i].z; } for (int i = 0; i < n2; i++) { height_diff -= points2[i].z; } height_diff /= (double)(n1 + n2); // 计算土方量和填方量 for (int i = 0; i < n1; i++) { double d = height_diff - points1[i].z; if (d > 0) { fill += d; } else { cut -= d; } total += d; } for (int i = 0; i < n2; i++) { double d = height_diff - points2[i].z; if (d > 0) { cut += d; } else { fill -= d; } total -= d; } // 输出土石方量结果 printf("Cut Volume: %.2lf cubic meters\n", cut); printf("Fill Volume: %.2lf cubic meters\n", fill); printf("Total Volume: %.2lf cubic meters\n", total); return total; } int main() { // 两组点云数据 struct Point points1[] = {{0.0, 0.0, 0.0}, {1.0, 1.0, 1.0}, {2.0, 2.0, 2.0}, {3.0, 3.0, 3.0}}; int n1 = 4; struct Point points2[] = {{0.0, 0.0, 1.0}, {1.0, 1.0, 1.0}, {2.0, 2.0, 2.0}}; int n2 = 3; // 计算土石方量 double volume = calculateCutAndFill(points1, n1, points2, n2); return 0; } 这个示例代码中,首先定义了一个 Point 结构体来表示点云中的一个点,并实现了一个 distance 函数来计算两个点之间的距离。然后定义了一个 calculateCutAndFill 函数来计算两组
要计算二期土石方中的填方量,可以按照以下步骤进行: 1. 针对两组点云数据,计算它们之间的差异,得到一个新的点云数据集,该数据集表示从第一组点云到第二组点云中新增的点的集合。这个过程被称为点云配准(point cloud registration)。 2. 对新的点云数据集进行体积计算,以得到填方量。计算方法可以是基于体素(voxel)的方法或者基于三角网格(triangle mesh)的方法。 基于体素的方法是将整个空间划分为一个三维网格,每个网格被称为体素,然后计算新增点云数据集中被填充的体素数量。该方法的优点是简单高效,但由于网格大小和体素大小的选择可能会影响计算结果的精度,因此需要仔细选择这些参数。 基于三角网格的方法则是先将新增点云数据集转换为三角网格,然后计算该三角网格的体积。该方法的优点是可以精确地表示填方区域的形状和表面,但计算成本可能较高。 以下是一个基于体素的C代码示例,用于计算新增点云数据集的填方量: #include <stdio.h> #include <stdlib.h> #define GRID_SIZE 1.0 // 网格大小 #define EPSILON 0.00001 // 精度 typedef struct { float x, y, z; } Point3D; typedef struct { Point3D min, max; } BoundingBox; typedef struct { int x, y, z; } VoxelIndex; typedef struct { int nx, ny, nz; // 网格尺寸 float ox, oy, oz; // 网格原点 float dx, dy, dz; // 网格间距 int *voxels; // 体素数组 } VoxelGrid; // 创建一个空的体素网格 VoxelGrid *createVoxelGrid(BoundingBox bbox) { VoxelGrid *grid = (VoxelGrid *)malloc(sizeof(VoxelGrid)); grid->ox = bbox.min.x; grid->oy = bbox.min.y; grid->oz = bbox.min.z; grid->dx = grid->dy = grid->dz = GRID_SIZE; grid->nx = (int)((bbox.max.x - bbox.min.x) / GRID_SIZE + EPSILON) + 1; grid->ny = (int)((bbox.max.y - bbox.min.y) / GRID_SIZE + EPSILON) + 1; grid->nz = (int)((bbox.max.z - bbox.min.z) / GRID_SIZE + EPSILON) + 1; grid->voxels = (int *)calloc(grid->nx * grid->ny * grid->nz, sizeof(int)); return grid; } // 将一个点转换为体素索引 VoxelIndex pointToVoxelIndex(Point3D p, VoxelGrid *grid) { VoxelIndex index; index.x = (int)((
以下是一个基于DTM(数字地形模型)计算挖方量的示例C代码。假设输入的点云数据分别存储在两个数组中,每个数组包含x,y和z坐标的三元组。我们将使用最简单的算法来计算挖方量:对于每个点,将其高程从两期DTM中的较高高程中减去,如果高程差为正则表示该点需要挖掉一定深度的土方。 c #include <stdio.h> #include <stdlib.h> #include <math.h> #define MAX_POINTS 100000 struct Point { double x; double y; double z; }; double distance(struct Point p1, struct Point p2) { double dx = p1.x - p2.x; double dy = p1.y - p2.y; double dz = p1.z - p2.z; return sqrt(dx*dx + dy*dy + dz*dz); } double compute_volume(struct Point* points1, int num_points1, struct Point* points2, int num_points2) { double volume = 0.0; int i, j; // Compute the bounding box of the two point sets double min_x = INFINITY, min_y = INFINITY, min_z = INFINITY; double max_x = -INFINITY, max_y = -INFINITY, max_z = -INFINITY; for (i = 0; i < num_points1; i++) { struct Point p = points1[i]; if (p.x < min_x) min_x = p.x; if (p.y < min_y) min_y = p.y; if (p.z < min_z) min_z = p.z; if (p.x > max_x) max_x = p.x; if (p.y > max_y) max_y = p.y; if (p.z > max_z) max_z = p.z; } for (i = 0; i < num_points2; i++) { struct Point p = points2[i]; if (p.x < min_x) min_x = p.x; if (p.y < min_y) min_y = p.y; if (p.z < min_z) min_z = p.z; if (p.x > max_x) max_x = p.x; if (p.y > max_y) max_y = p.y; if (p.z > max_z) max_z = p.z; } // Create the DTM by interpolating between the two point sets double dx = (max_x - min_x) / 100.0; double dy = (max_y - min_y) / 100.0; double** dtm1 = (double**) malloc(101 * sizeof(double*)); double** dtm2 = (double**) malloc(101 * sizeof(double*)); for (i = 0; i <= 100; i++) { dtm1[i] = (double*) malloc(101 * sizeof(double)); dtm2[i] = (double*) malloc(101 * sizeof(double)); } for (i = 0; i <= 100; i++) { for (j = 0; j <= 100; j++) { double x = min_x + i * dx; double y = min_y + j * dy; int k; double
以下是一个简单的示例C代码,实现了输入两组点云数据并计算其体积的功能。假设输入的点云数据已经进行了三角网格化,我们可以使用以下算法来计算每个三角形的体积: 1. 对于每个三角形,计算其三个顶点的坐标和高程,并使用向量积计算其面积; 2. 将面积与高程相乘,得到三角形的体积; 3. 将所有三角形的体积加起来,得到点云数据的总体积。 以下代码仅供参考,具体实现可能因为数据格式、文件读取方式等因素而有所不同。 c #include <stdio.h> #include <stdlib.h> #include <math.h> #define MAX_POINTS 10000 #define MAX_TRIANGLES 30000 typedef struct { double x, y, z; } Point; typedef struct { int a, b, c; // 三个顶点的索引 } Triangle; Point points1[MAX_POINTS]; // 第一组点云数据 Point points2[MAX_POINTS]; // 第二组点云数据 Triangle triangles[MAX_TRIANGLES]; // 三角形列表 int num_points1 = 0, num_points2 = 0, num_triangles = 0; // 数据量 double cross_product(Point a, Point b, Point c) { // 计算向量积 double ux = b.x - a.x, uy = b.y - a.y, uz = b.z - a.z; double vx = c.x - a.x, vy = c.y - a.y, vz = c.z - a.z; return ux * vy * wz - uy * vx * wz - uz * vy * wx + uy * vx * wz + uz * vy * wx - ux * vy * wz; } double triangle_volume(Point a, Point b, Point c) { // 计算三角形体积 double area = cross_product(a, b, c) / 2.0; double height = (a.z + b.z + c.z) / 3.0; return area * height; } double calculate_volume() { double volume = 0.0; // 遍历每个三角形 for (int i = 0; i < num_triangles; i++) { Triangle t = triangles[i]; Point a = points1[t.a], b = points1[t.b], c = points1[t.c]; double triangle_volume1 = triangle_volume(a, b, c); // 计算第一组点云数据的三角形体积 a = points2[t.a], b = points2[t.b], c = points2[t.c]; double triangle_volume2 = triangle_volume(a, b, c); // 计算第二组点云数据的三角形体积 volume += (triangle_volume1 + triangle_volume2) / 2.0; // 取两者平均值 } return volume; } int read_points(char* filename, Point* points, int* num_points) { // 从文件中读取点云数据 FILE* fp = fopen(filename, "r"); if (fp == NULL) { printf("Failed to open file

最新推荐

基于python实现计算两组数据P值

主要介绍了基于python实现计算两组数据P值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

rabbitmq客户端账号密码

在默认情况下,RabbitMQ的客户端账号和密码是"guest"。 但是,默认情况下,这个账号只能在localhost本机下访问,无法远程登录。如果需要添加一个远程登录的用户,可以使用命令rabbitmqctl add_user来添加用户,并使用rabbitmqctl set_permissions设置用户的权限。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [保姆级别带你入门RabbitMQ](https:

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

lua tm1637

TM1637是一种数字管显示驱动芯片,它可以用来控制4位7段数码管的显示。Lua是一种脚本语言,可以用于嵌入式系统和应用程序的开发。如果你想在Lua中使用TM1637驱动数码管,你需要先获取一个适配Lua的TM1637库或者编写自己的驱动代码。然后,你可以通过该库或者代码来控制TM1637芯片,实现数码管的显示功能。

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

生成模型的反事实解释方法及其局限性

693694不能很好地可视化/解释非空间定位的属性,如大小、颜色等。此外,它们可以显示图像的哪些区域可以被改变以影响分类,但不显示它们应该如何被改变。反事实解释通过提供替代输入来解决这些限制,其中改变一小组属性并且观察到不同的分类结果。生成模型是产生视觉反事实解释的自然候选者,事实上,最近的工作已经朝着这个目标取得了进展在[31,7,32,1]中,产生了生成的反事实解释,但它们的可视化立即改变了所有相关属性,如图所示。二、[29]中提供的另一种相关方法是使用来自分类器的深度表示来以不同粒度操纵生成的图像然而,这些可能涉及不影响分类结果的性质,并且还组合了若干属性。因此,这些方法不允许根据原子属性及其对分类的影响来其他解释方法使用属性生成反事实,其中可以对所需属性进行完全或部分监督[10,5

login_method

`login_method` 可以指代一个函数或方法,它的作用是用于实现用户登录的逻辑。具体实现方式可能因应用场景而异。例如,对于 web 应用程序,`login_method` 可以是一个视图函数,它接受用户提交的登录表单,验证用户信息,如果验证通过则创建会话并将用户信息保存在会话中;对于桌面应用程序,`login_method` 可以是一个类方法,它接受用户输入的登录信息,验证用户身份,如果验证通过则创建用户对象并保存在内存中,以便后续操作使用。总之,`login_method` 的作用是实现用户身份验证并创建用户会话或对象。