输入两组(x,y,z)的点云数据,可以分别知道其轮廓是什么图形并保存相关点,以及求两者的交集面积的不依赖第三方库实现的C或C++代码有吗?
时间: 2023-03-27 09:03:27 浏览: 93
使用vc++实现ICP配准算法,编译成动态链接库,通过调用CallICP函数可以实现两组点云之间的配准.zip
5星 · 资源好评率100%
可以使用计算几何的方法来实现。首先,对于每组点云数据,可以使用凸包算法得到其轮廓图形,并保存相关点。然后,对于两组点云数据,可以使用求凸包的方法得到其凸包,并求出其交集。最后,可以使用面积公式计算交集面积。以下是示例代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MAX_POINTS 100
typedef struct {
double x, y, z;
} Point;
typedef struct {
Point points[MAX_POINTS];
int count;
} PointCloud;
typedef struct {
Point points[MAX_POINTS];
int count;
} Polygon;
void add_point(PointCloud *cloud, double x, double y, double z) {
if (cloud->count >= MAX_POINTS) {
fprintf(stderr, "Error: too many points\n");
exit(1);
}
cloud->points[cloud->count].x = x;
cloud->points[cloud->count].y = y;
cloud->points[cloud->count].z = z;
cloud->count++;
}
void add_polygon_point(Polygon *polygon, double x, double y, double z) {
if (polygon->count >= MAX_POINTS) {
fprintf(stderr, "Error: too many points\n");
exit(1);
}
polygon->points[polygon->count].x = x;
polygon->points[polygon->count].y = y;
polygon->points[polygon->count].z = z;
polygon->count++;
}
double cross_product(Point a, Point b, Point c) {
double x1 = b.x - a.x;
double y1 = b.y - a.y;
double z1 = b.z - a.z;
double x2 = c.x - a.x;
double y2 = c.y - a.y;
double z2 = c.z - a.z;
return x1 * y2 * z1 - x2 * y1 * z1 - x1 * y2 * z2 + x2 * y1 * z2 + x1 * z2 * y1 - x2 * z1 * y1 - x1 * z2 * y2 + x2 * z1 * y2 + y1 * z2 * x2 - y2 * z1 * x1 - y1 * z2 * x1 + y2 * z1 * x1;
}
double dot_product(Point a, Point b, Point c) {
double x1 = b.x - a.x;
double y1 = b.y - a.y;
double z1 = b.z - a.z;
double x2 = c.x - a.x;
double y2 = c.y - a.y;
double z2 = c.z - a.z;
return x1 * x2 + y1 * y2 + z1 * z2;
}
double distance(Point a, Point b) {
double dx = a.x - b.x;
double dy = a.y - b.y;
double dz = a.z - b.z;
return sqrt(dx * dx + dy * dy + dz * dz);
}
double area(Polygon *polygon) {
double sum = .;
for (int i = ; i < polygon->count; i++) {
Point a = polygon->points[i];
Point b = polygon->points[(i + 1) % polygon->count];
sum += a.x * b.y - a.y * b.x;
}
return fabs(sum) / 2.;
}
void convex_hull(PointCloud *cloud, Polygon *polygon) {
int n = cloud->count;
int k = ;
Point hull[MAX_POINTS];
for (int i = ; i < n; i++) {
while (k >= 2 && cross_product(hull[k - 2], hull[k - 1], cloud->points[i]) <= ) {
k--;
}
hull[k++] = cloud->points[i];
}
for (int i = n - 2, t = k + 1; i >= ; i--) {
while (k >= t && cross_product(hull[k - 2], hull[k - 1], cloud->points[i]) <= ) {
k--;
}
hull[k++] = cloud->points[i];
}
polygon->count = k - 1;
for (int i = ; i < polygon->count; i++) {
polygon->points[i] = hull[i];
}
}
void intersection(Polygon *polygon1, Polygon *polygon2, Polygon *result) {
result->count = ;
for (int i = ; i < polygon1->count; i++) {
Point a = polygon1->points[i];
Point b = polygon1->points[(i + 1) % polygon1->count];
for (int j = ; j < polygon2->count; j++) {
Point c = polygon2->points[j];
Point d = polygon2->points[(j + 1) % polygon2->count];
double cp1 = cross_product(a, b, c);
double cp2 = cross_product(a, b, d);
double cp3 = cross_product(c, d, a);
double cp4 = cross_product(c, d, b);
if (cp1 * cp2 < && cp3 * cp4 < ) {
double t = cp1 / (cp1 - cp2);
double x = a.x + t * (b.x - a.x);
double y = a.y + t * (b.y - a.y);
double z = a.z + t * (b.z - a.z);
add_polygon_point(result, x, y, z);
}
}
}
}
int main() {
PointCloud cloud1 = {};
add_point(&cloud1, , , );
add_point(&cloud1, 1, , );
add_point(&cloud1, 1, 1, );
add_point(&cloud1, , 1, );
Polygon polygon1 = {};
convex_hull(&cloud1, &polygon1);
printf("Polygon 1:\n");
for (int i = ; i < polygon1.count; i++) {
printf("(%lf, %lf, %lf)\n", polygon1.points[i].x, polygon1.points[i].y, polygon1.points[i].z);
}
PointCloud cloud2 = {};
add_point(&cloud2, .5, .5, );
add_point(&cloud2, 1.5, .5, );
add_point(&cloud2, 1.5, 1.5, );
add_point(&cloud2, .5, 1.5, );
Polygon polygon2 = {};
convex_hull(&cloud2, &polygon2);
printf("Polygon 2:\n");
for (int i = ; i < polygon2.count; i++) {
printf("(%lf, %lf, %lf)\n", polygon2.points[i].x, polygon2.points[i].y, polygon2.points[i].z);
}
Polygon result = {};
intersection(&polygon1, &polygon2, &result);
printf("Intersection:\n");
for (int i = ; i < result.count; i++) {
printf("(%lf, %lf, %lf)\n", result.points[i].x, result.points[i].y, result.points[i].z);
}
printf("Area: %lf\n", area(&result));
return ;
}
```
阅读全文