4.能否修改CreateHCode()的算法,用来计算哈夫曼树的带权路径长度?

时间: 2024-02-15 17:03:53 浏览: 19
是的,可以修改CreateHCode()算法来计算哈夫曼树的带权路径长度。一种常见的方法是在CreateHCode()算法中添加一个参数,用于记录当前节点的深度和权值,然后在遍历哈夫曼树的过程中计算每个叶子节点的带权路径长度,最后将所有叶子节点的带权路径长度相加即可得到哈夫曼树的带权路径长度。 具体实现方法如下: 1. 在CreateHCode()算法中添加一个参数,用于记录当前节点的深度和权值。 2. 在遍历哈夫曼树的过程中,如果遇到叶子节点,则计算该叶子节点的带权路径长度,并将其保存到一个变量中。 3. 遍历完所有叶子节点后,将所有叶子节点的带权路径长度相加即可得到哈夫曼树的带权路径长度。 下面是一个示例代码,用于演示如何修改CreateHCode()算法来计算哈夫曼树的带权路径长度: ```c++ struct HTNode { char symbol; int weight; int parent; int leftChild; int rightChild; }; void CreateHCode(HTNode huffTree[], int n, string huffCode[], int& wpl) { for (int i = 0; i < n; i++) { int currentNode = i; int currentDepth = 0; int currentWeight = huffTree[i].weight; string currentCode = ""; while (huffTree[currentNode].parent != -1) { int parent = huffTree[currentNode].parent; if (huffTree[parent].leftChild == currentNode) { currentCode = "0" + currentCode; } else { currentCode = "1" + currentCode; } currentNode = parent; currentDepth++; } huffCode[i] = currentCode; wpl += currentWeight * currentDepth; } } ``` 在上面的代码中,我们添加了一个名为wpl的参数,用于记录哈夫曼树的带权路径长度。在遍历哈夫曼树的过程中,如果遇到叶子节点,则计算该叶子节点的带权路径长度,并将其累加到wpl中。最后,wpl就是哈夫曼树的带权路径长度。

相关推荐

#include <stdio.h> #include <string.h> #include <stdlib.h> #define N 100 typedef struct { char data; unsigned int weight; unsigned int parent,lchild, rchild; }HTNode; typedef struct { char cd[N]; int start;} HCode; // 创建Huffman树 void createHT(HTNode ht[], int n) { int i, k, lnode, rnode; double min1, min2; for (i = 0; i < 2 * n - 1; i++) ht[i].parent = ht[i].lchild = ht[i].rchild = -1; for (i = n; i <= 2 * n - 2; i++) { min1 = min2 = 32767; lnode = rnode = -1; for (k = 0; k <= i - 1; k++) { if (ht[k].parent == -1) { if (ht[k].weight < min1) { min2 = min1; rnode = lnode; min1 = ht[k].weight; lnode = k; } else if (ht[k].weight < min2) { min2 = ht[k].weight; rnode = k; } } } ht[i].weight = ht[lnode].weight + ht[rnode].weight; ht[i].lchild = lnode; ht[i].rchild = rnode; ht[lnode].parent = i; ht[rnode].parent = i; }} // 生成编码 void CreateHCode(HTNode ht[], HCode hcd[], int n) { int i, f, c; HCode hc; for (i = 0; i < n; i++) { hc.start = n; c = i; f = ht[i].parent; while (f != -1) { if (ht[f].lchild == c) hc.cd[hc.start--] = '0'; else hc.cd[hc.start--] = '1'; c = f; f = ht[f].parent; } hc.start++; hcd[i] = hc; }} int main() { char str[N] = "\0"; int x; printf("请输入字符串:"); gets(str); int n = strlen(str); HTNode ht[N]; for (int i = 0; i < n; i++) { ht[i].data = str[i]; printf("请输入第%d个结点权重:", i + 1); scanf("%d", &x); ht[i].weight = x; } HCode hcd[N]; createHT(ht, n); CreateHCode(ht, hcd, n); for (int j = 0; j < n; j++) { printf("%s", hcd[j].cd); } return 0; }改正错误

最新推荐

recommend-type

基于SpringBoot框架的中小企业完全开源的ERP.zip

基于springboot的java毕业&课程设计
recommend-type

基于Springboot的健身信息系统.zip

基于springboot的java毕业&课程设计
recommend-type

基于vue + springboot的学生成绩管理系统.zip

基于springboot的java毕业&课程设计
recommend-type

基于卷积神经网络的语义分割

基于卷积神经网络的语义分割卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均
recommend-type

track-map_android-master.zip

track-map_android-master
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。