运用深度学习算法对数据集中的六种手势进行识别的代码,运用Pytorch框架
时间: 2024-03-02 11:48:31 浏览: 54
以下是一个基于PyTorch框架的手势识别代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from torchvision.datasets import ImageFolder
# 数据预处理
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 加载数据集
train_set = ImageFolder('path/to/train/folder', transform=transform)
train_loader = DataLoader(train_set, batch_size=32, shuffle=True)
test_set = ImageFolder('path/to/test/folder', transform=transform)
test_loader = DataLoader(test_set, batch_size=32, shuffle=True)
# 定义模型
class GestureNet(nn.Module):
def __init__(self):
super(GestureNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(256 * 28 * 28, 1024)
self.fc2 = nn.Linear(1024, 6)
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(p=0.5)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = self.relu(x)
x = self.pool(x)
x = self.conv3(x)
x = self.relu(x)
x = self.pool(x)
x = x.view(-1, 256 * 28 * 28)
x = self.fc1(x)
x = self.relu(x)
x = self.dropout(x)
x = self.fc2(x)
return x
# 训练模型
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = GestureNet().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))
```
在上面的代码中,我们使用了一个包含三个卷积层和两个全连接层的卷积神经网络模型,来对六种手势进行分类。我们使用了Adam优化器和交叉熵损失函数来训练模型。在训练完成后,我们使用测试集对模型进行测试,并计算了模型的准确率。
阅读全文