在栅格地图上进行bilstm算法的路径规划代码
时间: 2023-10-03 19:11:19 浏览: 131
以下是基于栅格地图的BiLSTM路径规划的示例代码,仅供参考:
```python
import numpy as np
from keras.models import Sequential
from keras.layers import LSTM, Dense, Bidirectional
# 定义BiLSTM模型
def create_bilstm_model(input_shape, output_shape):
model = Sequential()
model.add(Bidirectional(LSTM(128, return_sequences=True), input_shape=input_shape))
model.add(Bidirectional(LSTM(64)))
model.add(Dense(output_shape, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# 加载栅格地图
grid_map = np.loadtxt('grid_map.txt')
# 设置起点和终点
start = (0, 0)
goal = (9, 9)
# 将栅格地图转换为输入数据
input_data = []
for i in range(grid_map.shape[0]):
row = []
for j in range(grid_map.shape[1]):
if (i, j) == start:
row.append([1, 0, 0])
elif (i, j) == goal:
row.append([0, 1, 0])
else:
row.append([0, 0, grid_map[i][j]])
input_data.append(row)
input_data = np.array(input_data)
# 定义模型输入和输出的形状
input_shape = (grid_map.shape[0], grid_map.shape[1], 3)
output_shape = 4
# 创建BiLSTM模型
model = create_bilstm_model(input_shape, output_shape)
# 训练模型
model.fit(input_data, y_train, epochs=10, batch_size=32)
# 预测路径
path = [start]
current = start
while current != goal:
x, y = current[0], current[1]
prediction = model.predict(np.array([input_data[x][y]]))[0]
next_x, next_y = np.argmax(prediction[:2]), np.argmax(prediction[2:])
if next_x == 0:
current = (current[0] - 1, current[1])
elif next_x == 1:
current = (current[0] + 1, current[1])
elif next_y == 0:
current = (current[0], current[1] - 1)
else:
current = (current[0], current[1] + 1)
path.append(current)
print(path)
```
在这个示例代码中,我们先加载了一个栅格地图,然后通过将起点和终点设置为特殊值,将栅格地图转换为输入数据。接下来,我们定义了一个BiLSTM模型,并使用训练数据对其进行训练。最后,我们使用训练好的模型来预测路径,并输出路径的坐标。注意,这个示例代码中的路径规划算法只是一个简单的示例,实际应用中可能需要更复杂的算法来处理更复杂的地图和场景。
阅读全文