A*和bilstm结合的路径栅格地图路径规划代码
时间: 2023-12-18 21:05:21 浏览: 89
以下是A*和BiLSTM结合的路径栅格地图路径规划的Python代码,其中使用PyTorch实现BiLSTM模型。
```python
import numpy as np
import heapq
import torch
import torch.nn as nn
# 定义BiLSTM模型
class BiLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(BiLSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_size*2, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
# 定义A*算法
def A_star(start, goal, obstacles, model):
# 定义节点类
class Node:
def __init__(self, x, y, g, h, parent=None):
self.x = x
self.y = y
self.g = g
self.h = h
self.parent = parent
def f(self):
return self.g + self.h
def __lt__(self, other):
return self.f() < other.f()
# 定义启发函数
def heuristic(node):
return np.sqrt((node.x - goal[0])**2 + (node.y - goal[1])**2)
# 定义邻居节点生成函数
def get_neighbors(node):
neighbors = []
for dx, dy in [(1, 0), (-1, 0), (0, 1), (0, -1)]:
x = node.x + dx
y = node.y + dy
if x < 0 or x >= map_width or y < 0 or y >= map_height:
continue
if (x, y) in obstacles:
continue
neighbors.append(Node(x, y, 0, 0))
return neighbors
# 初始化起点和终点节点
start_node = Node(start[0], start[1], 0, heuristic(Node(start[0], start[1], 0, 0)))
goal_node = Node(goal[0], goal[1], 0, 0)
# 定义开放列表和关闭列表
open_list = [start_node]
closed_list = set()
# 迭代查找最优路径
while open_list:
# 取出开放列表中f值最小的节点
current_node = heapq.heappop(open_list)
# 如果当前节点是终点,则返回路径
if current_node.x == goal_node.x and current_node.y == goal_node.y:
path = []
while current_node:
path.append((current_node.x, current_node.y))
current_node = current_node.parent
return path[::-1]
# 加入关闭列表
closed_list.add((current_node.x, current_node.y))
# 生成邻居节点
neighbors = get_neighbors(current_node)
for neighbor in neighbors:
# 如果邻居节点已在关闭列表中,则跳过
if (neighbor.x, neighbor.y) in closed_list:
continue
# 计算邻居节点的g值和h值
neighbor.g = current_node.g + 1
x, y = neighbor.x, neighbor.y
input_data = torch.tensor([map_data[x-1:x+2, y-1:y+2]], dtype=torch.float32).to(device)
neighbor.h = model(input_data).item()
# 设置邻居节点的父节点为当前节点
neighbor.parent = current_node
# 如果邻居节点已在开放列表中,则更新g值和h值
for node in open_list:
if node.x == neighbor.x and node.y == neighbor.y:
if node.g > neighbor.g:
node.g = neighbor.g
node.h = neighbor.h
node.parent = neighbor.parent
break
else:
# 否则将邻居节点加入开放列表
heapq.heappush(open_list, neighbor)
# 如果无法到达终点,则返回空路径
return []
# 生成地图数据
map_width, map_height = 10, 10
map_data = np.zeros((map_width, map_height))
obstacles = [(2, 3), (3, 3), (4, 3), (5, 3), (6, 3), (6, 4), (6, 5), (5, 5), (4, 5), (3, 5)]
for obstacle in obstacles:
map_data[obstacle[0], obstacle[1]] = 1
# 定义起点和终点
start = (1, 1)
goal = (8, 8)
# 加载BiLSTM模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BiLSTM(9, 32, 2, 1).to(device)
model.load_state_dict(torch.load('bilstm_model.pth'))
# 路径规划
path = A_star(start, goal, obstacles, model)
# 输出路径
print(path)
```
阅读全文