data_copy=data.pivot_table(data,index=data['品种/项目'],values=['金额'],columns=['支付方式'],aggfunc=[np.sum])
时间: 2023-12-27 08:02:05 浏览: 58
这段代码的作用是根据数据集中的“品种/项目”、“支付方式”和“金额”三列数据生成一个透视表,并且对“金额”这一列进行求和操作。其中,参数index指定了透视表的行索引为“品种/项目”,参数values指定了透视表的数值为“金额”,参数columns指定了透视表的列索引为“支付方式”,aggfunc参数则指定了对“金额”这一列进行求和操作。生成的透视表保存在变量data_copy中。
相关问题
import streamlit as st import numpy as np import pandas as pd import pickle import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier import streamlit_echarts as st_echarts from sklearn.metrics import accuracy_score,confusion_matrix,f1_score def pivot_bar(data): option = { "xAxis":{ "type":"category", "data":data.index.tolist() }, "legend":{}, "yAxis":{ "type":"value" }, "series":[ ] }; for i in data.columns: option["series"].append({"data":data[i].tolist(),"name":i,"type":"bar"}) return option st.markdown("mode pracitce") st.sidebar.markdown("mode pracitce") df=pd.read_csv(r"D:\课程数据\old.csv") st.table(df.head()) with st.form("form"): index_val = st.multiselect("choose index",df.columns,["Response"]) agg_fuc = st.selectbox("choose a way",[np.mean,len,np.sum]) submitted1 = st.form_submit_button("Submit") if submitted1: z=df.pivot_table(index=index_val,aggfunc = agg_fuc) st.table(z) st_echarts(pivot_bar(z)) df_copy = df.copy() df_copy.drop(axis=1,columns="Name",inplace=True) df_copy["Response"]=df_copy["Response"].map({"no":0,"yes":1}) df_copy=pd.get_dummies(df_copy,columns=["Gender","Area","Email","Mobile"]) st.table(df_copy.head()) y=df_copy["Response"].values x=df_copy.drop(axis=1,columns="Response").values X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2) with st.form("my_form"): estimators0 = st.slider("estimators",0,100,10) max_depth0 = st.slider("max_depth",1,10,2) submitted = st.form_submit_button("Submit") if "model" not in st.session_state: st.session_state.model = RandomForestClassifier(n_estimators=estimators0,max_depth=max_depth0, random_state=1234) st.session_state.model.fit(X_train, y_train) y_pred = st.session_state.model.predict(X_test) st.table(confusion_matrix(y_test, y_pred)) st.write(f1_score(y_test, y_pred)) if st.button("save model"): pkl_filename = "D:\\pickle_model.pkl" with open(pkl_filename, 'wb') as file: pickle.dump(st.session_state.model, file) 会出什么错误
我没有发现代码中的错误。但是,你需要明确一些内容:
1. 你需要保证数据集的路径正确,并且数据集的格式正确。
2. 如果使用了 `streamlit_echarts` 库,在运行代码前需要先安装该库,可以通过 `!pip install streamlit_echarts` 命令进行安装。
3. 确保所有的依赖项都已经被正确地导入。
4. 确认你的代码没有语法错误和逻辑错误。
如果你仍然遇到问题,请提供更详细的错误信息或者异常信息。
# 优惠券15天内核销率 feature_Coupon[prefixs+'15_consume_rate'] = list(map(lambda x,y: x/y if y!=0 else 0, feature_Coupon[prefixs + '15days_consume_cnt'], feature_Coupon[prefixs + 'received_cnt'])) # 优惠券15天内被核销的最大时间间隔 t6 = data[data['label']==1].copy() t6['time_gap'] = (t6['date'] - t6['date_received']).map(lambda x:x.total_seconds()/(24*60*60)) pivot = pd.pivot_table(t6, index=keys4, values='time_gap', aggfunc=np.max) pivot = pd.DataFrame(pivot).rename(columns={'time_gap':prefixs + '15days_max_time_gap'}).reset_index() feature_Coupon = pd.merge(feature_Coupon, pivot, on=keys4, how='left')请用groupby(函数改写)
可以使用groupby函数对数据进行分组并聚合,改写上述代码如下:
```
# 优惠券15天内核销率
feature_Coupon[prefixs+'15_consume_rate'] = feature_Coupon.apply(lambda x: x[prefixs + '15days_consume_cnt'] / x[prefixs + 'received_cnt'] if x[prefixs + 'received_cnt'] != 0 else 0, axis=1)
# 优惠券15天内被核销的最大时间间隔
t6 = data[data['label'] == 1].copy()
t6['time_gap'] = (t6['date'] - t6['date_received']).dt.days
pivot = t6.groupby(keys4)['time_gap'].max().reset_index()
pivot = pivot.rename(columns={'time_gap': prefixs + '15days_max_time_gap'})
feature_Coupon = pd.merge(feature_Coupon, pivot, on=keys4, how='left')
```
其中,对于优惠券15天内核销率的计算,可以使用apply函数对每一行数据进行计算。对于优惠券15天内被核销的最大时间间隔的计算,可以使用groupby函数对keys4进行分组,并对每组数据的time_gap列进行最大值的聚合。
阅读全文