def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42,42,1)) conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1) bn1 = layers.BatchNormalization()(conv1) pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn1) do1 = layers.Dropout(0.3)(pool1) # channel 2 inputs2 = layers.Input(shape=(42,42,1)) conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2) bn2 = layers.BatchNormalization()(conv2) pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn2) do2 = layers.Dropout(0.3)(pool2) # channel 3 inputs3 = layers.Input(shape=(42,42,1)) conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3) bn3 = layers.BatchNormalization()(conv3) pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn3) do3 = layers.Dropout(0.3)(pool3) # merge 1 merged = layers.Concatenate()([do1, do2, do3]) # interpretation 1 merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(merged) merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv) flat = layers.Flatten()(merged_pool) flat_do = layers.Dropout(0.2)(flat) # outputs outputs = layers.Dense(1, activation='linear', name='spot')(flat_do) #Takes input u, v, os model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile( loss={'spot':'mse'}, optimizer=opt, metrics={'spot':tf.keras.metrics.MeanAbsoluteError()}, ) return model 如何加入CBAM-ResNet模块,加在哪里
时间: 2023-08-30 18:06:54 浏览: 83
libaio1和libmecab2.zip
要加入CBAM-ResNet模块,可以参考以下步骤:
1. 导入CBAM模块
```python
from cbam import cbam_block
```
2. 在每个ResNet块中加入CBAM模块,可以在每个ResNet块的末尾添加CBAM块,如下所示:
```python
def resnet_block(input_layer, filters, conv_num=3, activation='relu'):
# ...
shortcut = input_layer
for i in range(conv_num - 1):
x = layers.Conv2D(filters, (3, 3), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation(activation)(x)
x = layers.Conv2D(filters, (3, 3), padding='same')(x)
x = layers.BatchNormalization()(x)
# 添加CBAM模块
x = cbam_block(x)
output_layer = layers.add([x, shortcut])
output_layer = layers.Activation(activation)(output_layer)
return output_layer
```
3. 修改模型构建部分,加入CBAM-ResNet模块,如下所示:
```python
def CBAM_ResNet(input_shape, num_classes, filters):
inputs = layers.Input(shape=input_shape)
x = layers.Conv2D(filters, (3, 3), padding='same')(inputs)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# 添加CBAM模块
x = cbam_block(x)
x = resnet_block(x, filters)
x = resnet_block(x, filters)
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(num_classes, activation='softmax')(x)
model = models.Model(inputs, x)
return model
```
这样就可以在CBAM-ResNet模块中加入CBAM模块了。
阅读全文