attention机制中Activation函数作用
时间: 2023-09-25 20:07:33 浏览: 254
在注意力机制中,激活函数的作用是将上一层的输出进行非线性转换,并产生一个权重向量,用于计算不同输入对当前位置的重要性。常见的激活函数有sigmoid、tanh、ReLU等。在注意力机制中,通常使用softmax函数将权重向量进行归一化,以确保所有权重的总和为1,从而生成加权输入向量。这个加权输入向量将被用于计算当前位置的输出,从而使模型能够关注输入中最重要的部分。因此,激活函数在注意力机制中起着非常重要的作用。
相关问题
请加入卷积给我的例子 : # 定义输入张量 input_data1 = Input(shape=(time_steps1, input_dim1)) #lstm1 = input_data1 # 对于维的注意力机制 attention_mul1 = attention_3d_block(input_data1, 'dim_reduction1' ,'attention_vec1' ) attention_mul1 = Dense(64, activation='relu')(attention_mul1) # 定义时间步注意力机制 attention_time1 = TimeDistributed(Dense(1, activation='tanh'))(attention_mul1) attention_time1 = Activation('softmax')(attention_time1) context_time1 = Dot(axes=1)([attention_time1, attention_mul1]) # 定义维度注意力机制 attention_dim1 = Dense(input_dim1, activation='tanh')(context_time1) attention_dim1 = Activation('softmax')(attention_dim1) context_dim1 = Dot(axes=1)([attention_dim1, context_time1]) # 定义第二层时间步注意力机制 attention_time2 = TimeDistributed(Dense(1, activation='tanh'))(context_dim1) attention_time2 = Activation('softmax')(attention_time2) context_time2 = Dot(axes=1)([attention_time2, context_dim1]) # 定义第二层维度注意力机制 attention_dim2 = Dense(input_dim1, activation='tanh')(context_time2) attention_dim2 = Activation('softmax')(attention_dim2) context_dim2 = Dot(axes=1)([attention_dim2, context_time2]) lstm1 = LSTM(128, return_sequences=True)(context_dim2) # 加入LSTM层 lstm_out1 = Dense(64, activation='relu')(lstm1) lstm_out1 = Dense(32, activation='tanh')(lstm_out1) lstm_out1 = Dense(16, activation='softmax')(lstm_out1)
好的,我来为您添加卷积层的代码,如下所示:
```
from keras.layers import Conv1D, MaxPooling1D, Flatten
# 定义输入张量
input_data1 = Input(shape=(time_steps1, input_dim1))
# 添加卷积层
conv1d_1 = Conv1D(filters=64, kernel_size=3, activation='relu')(input_data1)
# 对于维的注意力机制
attention_mul1 = attention_3d_block(conv1d_1, 'dim_reduction1' ,'attention_vec1' )
attention_mul1 = Dense(64, activation='relu')(attention_mul1)
# 定义时间步注意力机制
attention_time1 = TimeDistributed(Dense(1, activation='tanh'))(attention_mul1)
attention_time1 = Activation('softmax')(attention_time1)
context_time1 = Dot(axes=1)([attention_time1, attention_mul1])
# 定义维度注意力机制
attention_dim1 = Dense(input_dim1, activation='tanh')(context_time1)
attention_dim1 = Activation('softmax')(attention_dim1)
context_dim1 = Dot(axes=1)([attention_dim1, context_time1])
# 定义第二层时间步注意力机制
attention_time2 = TimeDistributed(Dense(1, activation='tanh'))(context_dim1)
attention_time2 = Activation('softmax')(attention_time2)
context_time2 = Dot(axes=1)([attention_time2, context_dim1])
# 定义第二层维度注意力机制
attention_dim2 = Dense(input_dim1, activation='tanh')(context_time2)
attention_dim2 = Activation('softmax')(attention_dim2)
context_dim2 = Dot(axes=1)([attention_dim2, context_time2])
# 加入LSTM层
lstm1 = LSTM(128, return_sequences=True)(context_dim2)
lstm_out1 = Dense(64, activation='relu')(lstm1)
lstm_out1 = Dense(32, activation='tanh')(lstm_out1)
lstm_out1 = Dense(16, activation='softmax')(lstm_out1)
```
这里在输入张量上增加了一个1D卷积层,卷积核大小为3,过滤器数为64,激活函数为ReLU。卷积层输出的张量被送入注意力机制模块中进行处理。之后的代码与原来的代码完全相同,只是在输入张量和注意力机制之间增加了一个卷积层。
def multi_head_attention(input_data, head_num): # 定义时间步注意力机制 attention_time = TimeDistributed(Dense(1, activation='tanh'))(input_data) attention_time = Activation('softmax')(attention_time) # 定义特征维度注意力机制 attention_dim_list = [] for i in range(head_num): attention_dim = Dense(int(input_data.shape[-1]), activation='tanh')(input_data) attention_dim = Activation('softmax')(attention_dim) attention_dim = multiply([attention_dim, attention_time]) attention_dim_list.append(attention_dim) # 计算多头注意力 context_list = [] for i in range(head_num): context = Dot(axes=1)([attention_dim_list[i], input_data]) context_list.append(context) context = Concatenate()(context_list) return context 这部分代码可以用做你举例的多头部分吧 ?
是的,这段代码是一个用于实现多头注意力机制的函数。它的输入参数包括 input_data(输入数据)和 head_num(头数),其中 input_data 的形状为 (batch_size, time_steps, input_dim)。该函数的输出是一个多头注意力机制的结果,即加权和后的上下文向量,其形状为 (batch_size, time_steps, input_dim * head_num)。
具体来说,这个函数首先对输入数据进行时间步注意力机制的计算,得到一个形状为 (batch_size, time_steps, 1) 的注意力分布张量 attention_time。然后,对于每个头,它都会分别计算一个形状为 (batch_size, time_steps, input_dim) 的注意力分布张量 attention_dim,该张量是通过对输入数据进行全连接层和 softmax 操作得到的。最后,将 attention_dim 和 attention_time 进行点乘操作,并将结果加入到一个列表中。计算完所有头的注意力分布张量后,将它们分别与输入数据进行点乘操作,并将所有头的结果拼接在一起得到上下文向量 context。
阅读全文