#coding:utf8 import pandas as pd # 导入pandas库 import numpy as np # 导入numpy库 def choose_data(data): #选择变量'user_id', 'time', 'model_id', 'type', 'cate', 'brand',选取time在2016-02-01及以后的数据(包含2016-02-01)且type=6,数据类型如下: # user_id sku_id time model_id type cate brand # 0 266079 138778 2016-01-31 23:59:02 NaN 1 8 403 # 1 266079 138778 2016-01-31 23:59:03 0.0 6 8 403 # 2 200719 61226 2016-01-31 23:59:07 NaN 1 8 30 # 3 200719 61226 2016-01-31 23:59:08 0.0 6 8 30 # 4 263587 72348 2016-01-31 23:59:08 NaN 1 5 159 ########## Begin ########## ########## End ########## return data

时间: 2024-02-10 10:33:01 浏览: 58
PDF

利用numpy和pandas处理csv文件中的时间方法

这段代码是一个Python函数,其作用是从一个数据集中选择符合特定条件的数据。具体来说,函数的输入参数为一个数据集(DataFrame格式),输出为一个经过筛选后的数据集。 函数中使用了pandas和numpy两个库,用于数据处理和计算。其中,函数的主体部分是通过pandas的数据筛选功能实现的,可以根据指定的条件选择数据集中的部分数据。 具体来说,函数选择了变量'user_id', 'time', 'model_id', 'type', 'cate', 'brand',并且选取time在2016-02-01及以后的数据(包含2016-02-01)且type=6的数据。在函数的最后,返回筛选后的数据集。 需要注意的是,这段代码缺少注释,不够易读和易懂,建议添加注释以便于阅读和理解。
阅读全文

相关推荐

#coding:utf8 import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np sns.set_style('darkgrid') import matplotlib.font_manager as fm myfont=fm.FontProperties(fname=r'./data/simhei.ttf') #请完善下面的函数 def push_week(new_data): ############ Begin ############ new_data=new_data[new_data['type']==4].copy() #选取样本 new_data['weekdays'] = pd.to_datetime(new_data['time']).apply(lambda x: x.weekday()+1) #时间转化 week_days = new_data.groupby('weekdays')['user_id'].count() #统计购买次数 fig=plt.figure(figsize=(8,6)) #设置大小 bar_width = 0.33 # 设置宽度 plt.bar(week_days.index.values , week_days.values, bar_width, label='下单的次数') plt.xlabel('时间',fontproperties=myfont,fontsize=9) plt.ylabel('数量',fontproperties=myfont,fontsize=9) plt.title('一周内每天的下单情况',fontproperties=myfont,fontsize=12) plt.xticks(week_days.index.values, ('周一', '周二', '周三', '周四', '周五', '周六', '周日'),fontproperties=myfont,fontsize=9) plt.ylim(0,300) plt.legend(prop=myfont) ############ End ############ plt.savefig('./task2/task2_week.png') plt.close(fig) def push_date(new_data): new_data = new_data[(new_data['type'] == 4) & (pd.to_datetime(new_data['time']) < pd.to_datetime('2016-03-01'))].copy() #选出2016年数据 new_data['days'] = [x.day for x in pd.to_datetime(new_data['time'])] #选出天数 renew=new_data.groupby('days')['sku_id'].count() fig = plt.figure(figsize=(8, 6)) plt.plot(renew.index.values,renew.values,label='购买次数') plt.xlabel('天数',fontproperties=myfont,fontsize=9) plt.ylabel('次数',fontproperties=myfont,fontsize=9) plt.title('购买量和月内日期的关系',fontproperties=myfont,fontsize=12) plt.legend(prop=myfont) ############ End ############ plt.savefig('./task2/task2_date.png') plt.close(fig) 报错src/task2_test.py:22: FutureWarning: The pandas.datetime class is deprecated and will be removed from pandas in a future version. Import from datetime instead. data['weekdays'] = pd.to_datetime(data['time']).apply(pd.datetime.weekday) + 1 购买意愿与星期之间的关系图完成! 购买意愿与日期之间的关系图完成!

# -*- coding: utf-8 -*- """ Transform the data type from ascii to ubyte format (8 bits unsigned binary) and save to new files, which would reduce the data size to 1/3, and would save the data transforming time when read by the python @author: Marmot """ import numpy as np import time from itertools import islice import pandas as pd # data_folder = '../../data/' set_list = ['train','testA','testB'] size_list = [10000,2000,2000] time1= time.time() for set_name,set_size in zip(set_list,size_list): output_file = data_folder + set_name + '_ubyte.txt' f = open(output_file, "w") f.close() Img_ind = 0 input_file = data_folder + set_name +'.txt' with open(input_file) as f: for content in f: Img_ind = Img_ind +1 print('transforming ' + set_name + ': ' + str(Img_ind).zfill(5)) line = content.split(',') title = line[0] + ' '+line[1] data_write = np.asarray(line[2].strip().split(' ')).astype(np.ubyte) data_write = (data_write + 1).astype(np.ubyte) if data_write.max()>255: print('too large') if data_write.min()<0: print('too small') f = open(output_file, "a") f.write(data_write.tobytes()) f.close() time2 = time.time() print('total elapse time:'+ str(time2- time1)) #%% generate train label list value_list =[] set_name = 'train' input_file = data_folder + set_name +'.txt' with open(input_file) as f: for content in f: line = content.split(',') value_list.append(float(line[1])) value_list = pd.DataFrame(value_list, columns=['value']) value_list.to_csv(data_folder + 'train_label.csv',index = False,header = False)

解释下列代码# -*- coding: gbk-*- import numpy as np import pandas as pd header = ['user_id', 'item_id', 'rating', 'timestamp'] with open("u.data", "r") as file_object: df = pd.read_csv(file_object, sep='\t', names=header) print(df) n_users = df.user_id.unique().shape[0] n_items = df.item_id.unique().shape[0] print('Number of users = ' + str(n_users) + ' | Number of movies =' + str(n_items)) from sklearn.model_selection import train_test_split train_data, test_data = train_test_split(df, test_size=0.2, random_state=21) train_data_matrix = np.zeros((n_users, n_items)) for line in train_data.itertuples(): train_data_matrix[line[1] - 1, line[2] -1] = line[3] test_data_matrix = np.zeros((n_users, n_items)) for line in test_data.itertuples(): test_data_matrix[line[1] - 1, line[2] - 1] = line[3] print(train_data_matrix.shape) print(test_data_matrix.shape) from sklearn.metrics.pairwise import cosine_similarity item_similarity = cosine_similarity(train_data_matrix.T) print(u" 物品相似度矩阵 :", item_similarity.shape) print(u"物品相似度矩阵: ", item_similarity) def predict(ratings, similarity, type): # 基于物品相似度矩阵的 if type == 'item': pred = ratings.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)]) print(u"预测值: ", pred.shape) return pred # 预测结果 item_prediction = predict(train_data_matrix, item_similarity, type='item') print(item_prediction) from sklearn.metrics import mean_squared_error from math import sqrt def rmse(prediction, ground_truth): prediction = prediction[ground_truth.nonzero()].flatten() ground_truth = ground_truth[ground_truth.nonzero()].flatten() return sqrt(mean_squared_error(prediction, ground_truth)) item_prediction = np.nan_to_num(item_prediction) print('Item-based CF RMSE: ' + str(rmse(item_prediction, test_data_matrix)))

分析以下代码#!/usr/bin/python # -*- coding:utf-8 -*- import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 'sepal length', 'sepal width', 'petal length', 'petal width' iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度' if __name__ == "__main__": path = 'D:\\iris.data' # 数据文件路径 data = pd.read_csv(path, header=None) x, y = data[range(4)], data[4] y = pd.Categorical(y).codes x = x[[0, 1]] x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6) # 分类器 clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr') # clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr') clf.fit(x_train, y_train.ravel()) # 准确率 print (clf.score(x_train, y_train)) # 精度 print ('训练集准确率:', accuracy_score(y_train, clf.predict(x_train))) print (clf.score(x_test, y_test)) print ('测试集准确率:', accuracy_score(y_test, clf.predict(x_test))) # decision_function print ('decision_function:\n', clf.decision_function(x_train)) print ('\npredict:\n', clf.predict(x_train)) # 画图 x1_min, x2_min = x.min() x1_max, x2_max = x.max() x1, x2 = np.mgrid[x1_min:x1_max:500j, x2_min:x2_max:500j] # 生成网格采样点 grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点 # print 'grid_test = \n', grid_test # Z = clf.decision_function(grid_test) # 样本到决策面的距离 # print Z grid_hat = clf.predict(grid_test) # 预测分类值 grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同 mpl.rcParams['font.sans-serif'] = [u'SimHei'] mpl.rcParams['axes.unicode_minus'] = False cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF']) cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b']) plt.figure(facecolor='w') plt.pcolormesh(x1, x2, grid_hat, shading='auto', cmap=cm_light) plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本 plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中测试集样本 plt.xlabel(iris_feature[0], fontsize=13) plt.ylabel(iris_feature[1], fontsize=13) plt.xlim(x1_min, x1_max) plt.ylim(x2_min, x2_max) plt.title(u'鸢尾花SVM二特征分类', fontsize=16) plt.grid(b=True, ls=':') plt.tight_layout(pad=1.5) plt.show()

最新推荐

recommend-type

【优化流量】基于matlab遗传算法GA求解OD流量优化问题【含Matlab源码 9159期】.mp4

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

基于深度学习YOLOv9实现道路红绿灯行人车辆(8类)识别检测系统python源码+详细教程+模型+数据集+评估指标曲线.zip

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 更多详情介绍,见资源内的项目说明
recommend-type

(源码)基于SpringBoot和Vue的学生作业互评系统.zip

# 基于Spring Boot和Vue的学生作业互评系统 ## 项目简介 本项目是一个基于Spring Boot和Vue框架开发的学生作业互评系统。系统主要功能包括学生作业的提交、教师作业的布置、作业的批改与评分、以及学生之间的作业互评。通过该系统,教师可以方便地管理课程和作业,学生可以在线提交作业并参与互评,从而提高作业质量和学习效果。 ## 项目的主要特性和功能 1. 用户管理 支持学生、教师和管理员三种角色的用户管理。 提供用户注册、登录、密码修改等功能。 2. 课程管理 教师可以创建和管理课程,学生可以选课。 支持课程信息的查看和编辑。 3. 作业管理 教师可以布置作业,设置作业的截止日期和评分标准。 学生可以在线提交作业,查看作业提交状态。 4. 作业批改与评分 教师可以对学生提交的作业进行批改和评分。 学生可以查看自己的作业评分和教师的评语。
recommend-type

Java集合ArrayList实现字符串管理及效果展示

资源摘要信息:"Java集合框架中的ArrayList是一个可以动态增长和减少的数组实现。它继承了AbstractList类,并且实现了List接口。ArrayList内部使用数组来存储添加到集合中的元素,且允许其中存储重复的元素,也可以包含null元素。由于ArrayList实现了List接口,它支持一系列的列表操作,包括添加、删除、获取和设置特定位置的元素,以及迭代器遍历等。 当使用ArrayList存储元素时,它的容量会自动增加以适应需要,因此无需在创建ArrayList实例时指定其大小。当ArrayList中的元素数量超过当前容量时,其内部数组会重新分配更大的空间以容纳更多的元素。这个过程是自动完成的,但它可能导致在列表变大时会有性能上的损失,因为需要创建一个新的更大的数组,并将所有旧元素复制到新数组中。 在Java代码中,使用ArrayList通常需要导入java.util.ArrayList包。例如: ```java import java.util.ArrayList; public class Main { public static void main(String[] args) { ArrayList<String> list = new ArrayList<String>(); list.add("Hello"); list.add("World"); // 运行效果图将显示包含"Hello"和"World"的列表 } } ``` 上述代码创建了一个名为list的ArrayList实例,并向其中添加了两个字符串元素。在运行效果图中,可以直观地看到这个列表的内容。ArrayList提供了多种方法来操作集合中的元素,比如get(int index)用于获取指定位置的元素,set(int index, E element)用于更新指定位置的元素,remove(int index)或remove(Object o)用于删除元素,size()用于获取集合中元素的个数等。 为了演示如何使用ArrayList进行字符串的存储和管理,以下是更加详细的代码示例,以及一个简单的运行效果图展示: ```java import java.util.ArrayList; import java.util.Iterator; public class Main { public static void main(String[] args) { // 创建一个存储字符串的ArrayList ArrayList<String> list = new ArrayList<String>(); // 向ArrayList中添加字符串元素 list.add("Apple"); list.add("Banana"); list.add("Cherry"); list.add("Date"); // 使用增强for循环遍历ArrayList System.out.println("遍历ArrayList:"); for (String fruit : list) { System.out.println(fruit); } // 使用迭代器进行遍历 System.out.println("使用迭代器遍历:"); Iterator<String> iterator = list.iterator(); while (iterator.hasNext()) { String fruit = iterator.next(); System.out.println(fruit); } // 更新***List中的元素 list.set(1, "Blueberry"); // 移除ArrayList中的元素 list.remove(2); // 再次遍历ArrayList以展示更改效果 System.out.println("修改后的ArrayList:"); for (String fruit : list) { System.out.println(fruit); } // 获取ArrayList的大小 System.out.println("ArrayList的大小为: " + list.size()); } } ``` 在运行上述代码后,控制台会输出以下效果图: ``` 遍历ArrayList: Apple Banana Cherry Date 使用迭代器遍历: Apple Banana Cherry Date 修改后的ArrayList: Apple Blueberry Date ArrayList的大小为: 3 ``` 此代码段首先创建并初始化了一个包含几个水果名称的ArrayList,然后展示了如何遍历这个列表,更新和移除元素,最终再次遍历列表以展示所做的更改,并输出列表的当前大小。在这个过程中,可以看到ArrayList是如何灵活地管理字符串集合的。 此外,ArrayList的实现是基于数组的,因此它允许快速的随机访问,但对元素的插入和删除操作通常需要移动后续元素以保持数组的连续性,所以这些操作的性能开销会相对较大。如果频繁进行插入或删除操作,可以考虑使用LinkedList,它基于链表实现,更适合于这类操作。 在开发中使用ArrayList时,应当注意避免过度使用,特别是当知道集合中的元素数量将非常大时,因为这样可能会导致较高的内存消耗。针对特定的业务场景,选择合适的集合类是非常重要的,以确保程序性能和资源的最优化利用。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MATLAB信号处理优化】:算法实现与问题解决的实战指南

![【MATLAB信号处理优化】:算法实现与问题解决的实战指南](https://i0.hdslb.com/bfs/archive/e393ed87b10f9ae78435997437e40b0bf0326e7a.png@960w_540h_1c.webp) # 1. MATLAB信号处理基础 MATLAB,作为工程计算和算法开发中广泛使用的高级数学软件,为信号处理提供了强大的工具箱。本章将介绍MATLAB信号处理的基础知识,包括信号的类型、特性以及MATLAB处理信号的基本方法和步骤。 ## 1.1 信号的种类与特性 信号是信息的物理表示,可以是时间、空间或者其它形式的函数。信号可以被分
recommend-type

在西门子S120驱动系统中,更换SMI20编码器时应如何确保数据的正确备份和配置?

在西门子S120驱动系统中更换SMI20编码器是一个需要谨慎操作的过程,以确保数据的正确备份和配置。这里是一些详细步骤: 参考资源链接:[西门子Drive_CLIQ编码器SMI20数据在线读写步骤](https://wenku.csdn.net/doc/39x7cis876?spm=1055.2569.3001.10343) 1. 在进行任何操作之前,首先确保已经备份了当前工作的SMI20编码器的数据。这通常需要使用STARTER软件,并连接CU320控制器和电脑。 2. 从拓扑结构中移除旧编码器,下载当前拓扑结构,然后删除旧的SMI
recommend-type

实现2D3D相机拾取射线的关键技术

资源摘要信息: "camera-picking-ray:为2D/3D相机创建拾取射线" 本文介绍了一个名为"camera-picking-ray"的工具,该工具用于在2D和3D环境中,通过相机视角进行鼠标交互时创建拾取射线。拾取射线是指从相机(或视点)出发,通过鼠标点击位置指向场景中某一点的虚拟光线。这种技术广泛应用于游戏开发中,允许用户通过鼠标操作来选择、激活或互动场景中的对象。为了实现拾取射线,需要相机的投影矩阵(projection matrix)和视图矩阵(view matrix),这两个矩阵结合后可以逆变换得到拾取射线的起点和方向。 ### 知识点详解 1. **拾取射线(Picking Ray)**: - 拾取射线是3D图形学中的一个概念,它是从相机出发穿过视口(viewport)上某个特定点(通常是鼠标点击位置)的射线。 - 在游戏和虚拟现实应用中,拾取射线用于检测用户选择的对象、触发事件、进行命中测试(hit testing)等。 2. **投影矩阵(Projection Matrix)与视图矩阵(View Matrix)**: - 投影矩阵负责将3D场景中的点映射到2D视口上,通常包括透视投影(perspective projection)和平面投影(orthographic projection)。 - 视图矩阵定义了相机在场景中的位置和方向,它将物体从世界坐标系变换到相机坐标系。 - 将投影矩阵和视图矩阵结合起来得到的invProjView矩阵用于从视口坐标转换到相机空间坐标。 3. **实现拾取射线的过程**: - 首先需要计算相机的invProjView矩阵,这是投影矩阵和视图矩阵的逆矩阵。 - 使用鼠标点击位置的视口坐标作为输入,通过invProjView矩阵逆变换,计算出射线在世界坐标系中的起点(origin)和方向(direction)。 - 射线的起点一般为相机位置或相机前方某个位置,方向则是从相机位置指向鼠标点击位置的方向向量。 - 通过编程语言(如JavaScript)的矩阵库(例如gl-mat4)来执行这些矩阵运算。 4. **命中测试(Hit Testing)**: - 使用拾取射线进行命中测试是一种检测射线与场景中物体相交的技术。 - 在3D游戏开发中,通过计算射线与物体表面的交点来确定用户是否选中了一个物体。 - 此过程中可能需要考虑射线与不同物体类型的交互,例如球体、平面、多边形网格等。 5. **JavaScript与矩阵操作库**: - JavaScript是一种广泛用于网页开发的编程语言,在WebGL项目中用于处理图形渲染逻辑。 - gl-mat4是一个矩阵操作库,它提供了创建和操作4x4矩阵的函数,这些矩阵用于WebGL场景中的各种变换。 - 通过gl-mat4库,开发者可以更容易地执行矩阵运算,而无需手动编写复杂的数学公式。 6. **模块化编程**: - camera-picking-ray看起来是一个独立的模块或库,它封装了拾取射线生成的算法,让开发者能够通过简单的函数调用来实现复杂的3D拾取逻辑。 - 模块化编程允许开发者将拾取射线功能集成到更大的项目中,同时保持代码的清晰和可维护性。 7. **文件名称列表**: - 提供的文件名称列表是"camera-picking-ray-master",表明这是一个包含多个文件和子目录的模块或项目,通常在GitHub等源代码托管平台上使用master分支来标识主分支。 - 开发者可以通过检查此项目源代码来更深入地理解拾取射线的实现细节,并根据需要进行修改或扩展功能。 ### 结论 "camera-picking-ray"作为一个技术工具,为开发者提供了一种高效生成和使用拾取射线的方法。它通过组合和逆变换相机矩阵,允许对3D场景中的物体进行精准选择和交互。此技术在游戏开发、虚拟现实、计算机辅助设计(CAD)等领域具有重要应用价值。通过了解和应用拾取射线,开发者可以显著提升用户的交互体验和操作精度。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【MATLAB时间序列分析】:预测与识别的高效技巧

![MATLAB](https://img-blog.csdnimg.cn/direct/8652af2d537643edbb7c0dd964458672.png) # 1. 时间序列分析基础概念 在数据分析和预测领域,时间序列分析是一个关键的工具,尤其在经济学、金融学、信号处理、环境科学等多个领域都有广泛的应用。时间序列分析是指一系列按照时间顺序排列的数据点的统计分析方法,用于从过去的数据中发现潜在的趋势、季节性变化、周期性等信息,并用这些信息来预测未来的数据走向。 时间序列通常被分为四种主要的成分:趋势(长期方向)、季节性(周期性)、循环(非固定周期)、和不规则性(随机波动)。这些成分