train_x=torch.tensor(df1.values, dtype=torch.float32)
时间: 2024-04-07 21:32:04 浏览: 149
这段代码将一个名为`df1`的Pandas数据框转换为一个PyTorch张量`train_x`。与之前不同的是,这里使用了`.values`方法获取数据框中的数据,并指定了数据类型为`torch.float32`。这样做的好处是可以避免上一个错误,因为`.values`返回的是一个NumPy数组,与PyTorch张量的数据类型兼容。
需要注意的是,这种转换方式只适用于数据框中所有的列都是数值型数据。如果数据框中包含非数值型数据,例如字符串或分类变量,需要先将它们转换为数值型数据,才能将整个数据框转换为张量。
相关问题
merged_data_with_env.to_excel('输出/输出数据/神经网络标准化数据.xlsx',index=False) X = merged_data_with_env.drop(columns=ag_env_scaled.columns.union(dj_env_scaled.columns)) y = merged_data_with_env[ag_env_scaled.columns.union(dj_env_scaled.columns)] y = merged_data_with_env[['ag_平均温度', 'ag_平均湿度', 'ag_05um', 'ag_5um', 'dj_平均温度', 'dj_平均湿度', 'dj_05um', 'dj_5um']].copy() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 转换数据为 PyTorch 张量 X_train_tensor = torch.tensor(X_train.values, dtype=torch.float32) y_train_tensor = torch.tensor(y_train.values, dtype=torch.float32) X_test_tensor = torch.tensor(X_test.values, dtype=torch.float32) y_test_tensor = torch.tensor(y_test.values, dtype=torch.float32) print(X_test_tensor())
在代码中,`merged_data_with_env` 是一个包含环境数据的数据集,并使用 `to_excel()` 方法将其写入到输出文件夹下的 `神经网络标准化数据.xlsx` 文件中。
接下来,代码使用 `drop()` 方法删除 `ag_env_scaled` 和 `dj_env_scaled` 列,将其余列作为特征数据 `X`,而 `ag_env_scaled` 和 `dj_env_scaled` 列则组成目标数据 `y`。
然后,代码使用 `train_test_split()` 方法将数据集拆分成训练集和测试集,比例为 8:2,并使用 PyTorch 中的张量将数据转换为张量格式。
最后,代码使用 `print()` 函数打印 `X_test_tensor` 的值,但是在括号中多了一对括号,应该去掉。
X_train_tensor = torch.tensor(X_train, dtype=torch.float32)报错
这个错误通常是由于你的 X_train 数据中包含了非数字类型的数据,导致无法转换为 tensor 类型的数据。请检查一下你的 X_train 数据是否有缺失值或者非数字值。如果有,你需要先对这些数据进行处理,例如使用 Pandas 库中的 fillna 函数进行缺失值填充,或者使用其他的数据清洗方法。如果你的数据确保都是数字类型,那么可以尝试将 X_train 的数据类型转换为 float 类型,例如:
```
X_train = X_train.astype('float32')
X_train_tensor = torch.tensor(X_train)
```
如果你能提供更多的代码和错误信息,我可以更好地帮助你解决问题。
阅读全文