用pytorch写一段代码:以西储大学CWRU轴承故障的振动信号数据库作为模型的训练集,故障类型标签包括:正常、内圈故障两类。首先将一维故障信号作为GAN模型的输入,然后使用GAN模型对其进行训练
时间: 2023-06-11 13:06:55 浏览: 190
基于PyTorch实现的火灾和烟雾的分类和检测项目源代码+预训练模型+数据集
首先,需要安装pytorch和numpy库。在此之前,需要确保已经安装Python环境。
```python
pip install torch numpy
```
然后,我们需要加载CWRU轴承故障的振动信号数据库。这里使用numpy库的load函数载入数据。
```python
import numpy as np
# 载入正常信号
normal_signals = np.load('normal_signals.npy')
# 载入内圈故障信号
faulty_signals = np.load('faulty_signals.npy')
```
接下来,我们需要构建GAN模型。这里使用pytorch库实现。
```python
import torch.nn as nn
class Generator(nn.Module):
def __init__(self, input_size):
super(Generator, self).__init__()
self.fc1 = nn.Linear(input_size, 128)
self.fc2 = nn.Linear(128, 256)
self.fc3 = nn.Linear(256, 512)
self.fc4 = nn.Linear(512, 1024)
self.fc5 = nn.Linear(1024, 2048)
self.fc6 = nn.Linear(2048, 4096)
self.fc7 = nn.Linear(4096, 8192)
self.fc8 = nn.Linear(8192, 16384)
self.fc9 = nn.Linear(16384, 32768)
self.fc10 = nn.Linear(32768, 65536)
self.fc11 = nn.Linear(65536, 131072)
self.fc12 = nn.Linear(131072, 262144)
self.fc13 = nn.Linear(262144, 524288)
self.fc14 = nn.Linear(524288, 1048576)
self.fc15 = nn.Linear(1048576, 2097152)
self.fc16 = nn.Linear(2097152, 4194304)
self.fc17 = nn.Linear(4194304, 8388608)
self.fc18 = nn.Linear(8388608, 16777216)
self.fc19 = nn.Linear(16777216, 33554432)
self.fc20 = nn.Linear(33554432, 67108864)
self.fc21 = nn.Linear(67108864, 134217728)
self.fc22 = nn.Linear(134217728, 268435456)
self.fc23 = nn.Linear(268435456, 268435456)
self.fc24 = nn.Linear(268435456, 134217728)
self.fc25 = nn.Linear(134217728, 67108864)
self.fc26 = nn.Linear(67108864, 33554432)
self.fc27 = nn.Linear(33554432, 16777216)
self.fc28 = nn.Linear(16777216, 8388608)
self.fc29 = nn.Linear(8388608, 4194304)
self.fc30 = nn.Linear(4194304, 2097152)
self.fc31 = nn.Linear(2097152, 1048576)
self.fc32 = nn.Linear(1048576, 524288)
self.fc33 = nn.Linear(524288, 262144)
self.fc34 = nn.Linear(262144, 131072)
self.fc35 = nn.Linear(131072, 65536)
self.fc36 = nn.Linear(65536, 32768)
self.fc37 = nn.Linear(32768, 16384)
self.fc38 = nn.Linear(16384, 8192)
self.fc39 = nn.Linear(8192, 4096)
self.fc40 = nn.Linear(4096, 2048)
self.fc41 = nn.Linear(2048, 1024)
self.fc42 = nn.Linear(1024, 512)
self.fc43 = nn.Linear(512, 256)
self.fc44 = nn.Linear(256, 128)
self.fc45 = nn.Linear(128, input_size)
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
x = self.relu(x)
x = self.fc4(x)
x = self.relu(x)
x = self.fc5(x)
x = self.relu(x)
x = self.fc6(x)
x = self.relu(x)
x = self.fc7(x)
x = self.relu(x)
x = self.fc8(x)
x = self.relu(x)
x = self.fc9(x)
x = self.relu(x)
x = self.fc10(x)
x = self.relu(x)
x = self.fc11(x)
x = self.relu(x)
x = self.fc12(x)
x = self.relu(x)
x = self.fc13(x)
x = self.relu(x)
x = self.fc14(x)
x = self.relu(x)
x = self.fc15(x)
x = self.relu(x)
x = self.fc16(x)
x = self.relu(x)
x = self.fc17(x)
x = self.relu(x)
x = self.fc18(x)
x = self.relu(x)
x = self.fc19(x)
x = self.relu(x)
x = self.fc20(x)
x = self.relu(x)
x = self.fc21(x)
x = self.relu(x)
x = self.fc22(x)
x = self.relu(x)
x = self.fc23(x)
x = self.relu(x)
x = self.fc24(x)
x = self.relu(x)
x = self.fc25(x)
x = self.relu(x)
x = self.fc26(x)
x = self.relu(x)
x = self.fc27(x)
x = self.relu(x)
x = self.fc28(x)
x = self.relu(x)
x = self.fc29(x)
x = self.relu(x)
x = self.fc30(x)
x = self.relu(x)
x = self.fc31(x)
x = self.relu(x)
x = self.fc32(x)
x = self.relu(x)
x = self.fc33(x)
x = self.relu(x)
x = self.fc34(x)
x = self.relu(x)
x = self.fc35(x)
x = self.relu(x)
x = self.fc36(x)
x = self.relu(x)
x = self.fc37(x)
x = self.relu(x)
x = self.fc38(x)
x = self.relu(x)
x = self.fc39(x)
x = self.relu(x)
x = self.fc40(x)
x = self.relu(x)
x = self.fc41(x)
x = self.relu(x)
x = self.fc42(x)
x = self.relu(x)
x = self.fc43(x)
x = self.relu(x)
x = self.fc44(x)
x = self.relu(x)
x = self.fc45(x)
x = self.tanh(x)
return x
class Discriminator(nn.Module):
def __init__(self, input_size):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(input_size, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 32)
self.fc4 = nn.Linear(32, 1)
self.sigmoid = nn.Sigmoid()
self.relu = nn.ReLU()
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
x = self.relu(x)
x = self.fc4(x)
x = self.sigmoid(x)
return x
```
现在,我们可以开始训练GAN模型了。首先,我们需要定义损失函数和优化器。
```python
import torch.optim as optim
# 定义生成器和判别器
input_size = 2048
generator = Generator(input_size)
discriminator = Discriminator(input_size)
# 定义损失函数和优化器
criterion = nn.BCELoss()
g_optimizer = optim.Adam(generator.parameters(), lr=0.0002)
d_optimizer = optim.Adam(discriminator.parameters(), lr=0.0002)
```
然后,我们需要编写训练代码。在每个epoch中,我们先训练生成器,然后训练判别器。
```python
# 定义训练函数
def train(num_epochs):
# 定义真实标签和假标签
real_label = torch.ones(batch_size, 1)
fake_label = torch.zeros(batch_size, 1)
for epoch in range(num_epochs):
for i in range(0, len(faulty_signals), batch_size):
# 训练判别器
discriminator.zero_grad()
real_signals = torch.tensor(faulty_signals[i:i+batch_size]).float()
real_outputs = discriminator(real_signals)
real_loss = criterion(real_outputs, real_label)
real_loss.backward()
noise = torch.randn(batch_size, input_size)
fake_signals = generator(noise)
fake_outputs = discriminator(fake_signals.detach())
fake_loss = criterion(fake_outputs, fake_label)
fake_loss.backward()
d_loss = real_loss + fake_loss
d_optimizer.step()
# 训练生成器
generator.zero_grad()
noise = torch.randn(batch_size, input_size)
fake_signals = generator(noise)
outputs = discriminator(fake_signals)
g_loss = criterion(outputs, real_label)
g_loss.backward()
g_optimizer.step()
# 输出损失函数
if i % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(faulty_signals), d_loss.item(), g_loss.item()))
```
最后,我们可以调用train函数开始训练GAN模型。
```python
batch_size = 32
num_epochs = 100
train(num_epochs)
```
阅读全文