K-means聚类算法实现采用莺尾花数据,学习决策树
时间: 2023-07-17 16:37:19 浏览: 213
抱歉,我之前的回答有误。以下是实现K-means聚类算法和学习决策树的步骤:
1. 导入必要的库:
```python
import numpy as np
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
```
2. 加载莺尾花数据集:
```python
iris = load_iris()
X = iris.data
y = iris.target
```
3. K-means聚类算法:
```python
kmeans = KMeans(n_clusters=3, random_state=0)
kmeans.fit(X)
labels = kmeans.labels_
```
4. 学习决策树:
```python
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.3, random_state=42)
tree = DecisionTreeClassifier()
tree.fit(X_train, y_train)
y_pred = tree.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```
这将输出一个准确性分数,用于评估分类器的性能。这里的K-means聚类算法用于对莺尾花数据进行聚类,并将聚类结果作为分类器的标签进行训练和测试。
阅读全文