K-means聚类算法实现,采用文件“C:\Users\Administrator\Desktop”里面的莺尾花数据,学习决策树,写出代码画出决策树
时间: 2024-02-27 10:08:41 浏览: 79
Handler());
params.setImportFieldHandler(new ExcelImportCellRangeDataHandler());
params.setImportFieldHandler(new ExcelImportCellRangeDataHandler());
params.setImportFieldHandler(new ExcelImportCellRangeDataHandler());
params.setImportFieldHandler(new ExcelImportCellRangeData好的,感谢您提供了更加具体和明确的问题。下面是关于K-means聚类Handler());
params.setImportFieldHandler(new ExcelImportCellRangeDataHandler());
params.setImportFieldHandler(new ExcelImportCellRangeData算法和决策树的实现代码:
K-means聚类算法实现代码:
```python
import numpy as npHandler());
params.setImportFieldHandler(new ExcelImportCellRangeDataHandler());
params.setImportFieldHandler(new ExcelImportCellRangeData
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
# 加载莺尾花数据集
iris = load_Handler());
params.setImportFieldHandler(new ExcelImportCellRangeDataHandler());
params.setImportFieldHandler(new ExcelImportCellRangeDataHandler());
params.setImportFieldHandler(new ExcelImportCellRangeDataHandler());
params.setImportFieldHandler(new ExcelImportCellRangeDatairis()
X = iris.data
# 构建K-means模型,聚类数量为3
kmeans = KMeans(n_clustersHandler());
params.setImportFieldHandler(new ExcelImportCellRangeDataHandler());
params.setImportFieldHandler(new ExcelImportCellRangeData=3, random_state=0)
# 进行聚类
kmeans.fit(X)
# 输出聚类结果
print(kmeans.labelsHandler());
params.setImportFieldHandler(new ExcelImportCellRangeDataHandler());
params.setImportFieldHandler(new ExcelImportCellRangeData_)
```
决策树实现代码:
```python
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier,Handler());
params.setImportFieldHandler(new ExcelImportCellRangeDataHandler());
params.setImportFieldHandler(new ExcelImportCellRangeData plot_tree
import matplotlib.pyplot as plt
# 加载莺尾花数据集
iris = load_iris()
X = iris.data
Handler());
params.setImportFieldHandler(new ExcelImportCellRangeDataHandler());
params.setImportFieldHandler(new ExcelImportCellRangeDatay = iris.target
# 构建决策树模型
clf = DecisionTreeClassifier(random_state=0)
# 进行拟合Handler());
params.setImportFieldHandler(new ExcelImportCellRangeDataHandler());
params.setImportFieldHandler(new ExcelImportCellRangeData
clf.fit(X, y)
# 绘制决策树
plt.figure(figsize=(20, 10))
plot_tree(clf, filledHandler());
params.setImportFieldHandler(new ExcelImportCellRangeDataHandler());
params.setImportFieldHandler(new ExcelImportCellRangeData=True)
plt.show()
```
需要注意的是,上述代码中需要安装scikit-learn和matplotlib库。另外Handler());
params.setImportFieldHandler(new ExcelImportCellRangeDataHandler());
params.setImportFieldHandler(new ExcelImportCellRangeData,决策树的绘制结果可能比较复杂,需要进行适当缩放和调整。
阅读全文