解释这段代码: matches = face_recognition.compare_faces(self.known_face_encodings, face_encoding) name = "Unknown"
时间: 2024-05-21 17:12:19 浏览: 184
这段代码的功能是进行人脸识别,其中self.known_face_encodings是已知的人脸图片的特征向量列表,face_encoding是待识别的人脸图片的特征向量。函数face_recognition.compare_faces返回一个列表,列表中每个元素代表一个已知人脸图片是否与待识别图片匹配,True代表匹配,False代表不匹配。matches就是这个列表。如果matches中有True值,则代表已知列表中有与该待识别图片匹配的照片,那么name就是这个匹配照片对应的人物名字。如果matches中全是False值,则代表该待识别图片没有匹配的已知人脸图片,那么name就是"Unknown"。
相关问题
这段 import cv2 import face_recognition import numpy as np from PIL import Image, ImageDraw,ImageFont video_capture = cv2.VideoCapture(r'C:/Users/ALIENWARE/123.mp4')#如果输入是(0)为摄像头输入 #现输入为MP4进行识别检测人脸 first_image = face_recognition.load_image_file("1.jpg") first_face_encoding = face_recognition.face_encodings(first_image)[0] Second_image = face_recognition.load_image_file("2.jpg") Second_face_encoding = face_recognition.face_encodings(Second_image)[0] third_image = face_recognition.load_image_file("3.jpg") third_face_encoding = face_recognition.face_encodings(third_image)[0] inside_face_encodings = [first_face_encoding,Second_face_encoding,third_face_encoding] inside_face_names = ['A','B','C'] face_locations = [] face_encodings = [] face_names = [] process_this_frame = True while True: ret, frame = video_capture.read() small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) rgb_small_frame = small_frame[:, :, ::-1] if process_this_frame: face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: matches = face_recognition.compare_faces(inside_face_encodings, face_encoding) name = '未录入人脸' if True in matches: first_match_index = matches.index(True) name = inside_face_names[first_match_index] face_names.append(name) process_this_frame = not process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names): top *= 4 right *= 4 bottom *= 4 left *= 4 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) img_pil = Image.fromarray(frame) draw = ImageDraw.Draw(img_pil) fontStyle = ImageFont.truetype("C:/Windows/Fonts/simsun.ttc", 32, encoding="utf-8") draw.text((left + 6, bottom - 6), name, (0, 200, 0), font=fontStyle) frame = np.asarray(np.array(img_pil)) cv2.imshow('face_out', frame) if cv2.waitKey(1) & 0xFF == ord('q'): #退出需要按下Q键否则内核会崩溃 break video_capture.release() cv2.destroyAllWindows()
好的,这段代码可以进行人脸识别并在视频中标出人脸,并在人脸旁边显示人名。如果你想要修改代码实现更大的差距,可以考虑以下几种方案:
1. 优化人脸识别算法,提高识别准确率;
2. 修改人脸识别模型,训练更加精准的模型;
3. 修改代码实现更加灵活的功能,比如增加人脸识别记录功能、记录人脸进出时间等;
4. 将代码移植到其他平台,比如移植到树莓派等嵌入式设备上。
具体实现方法需要根据你的需求和应用场景来定。如果你有具体的问题或需求,可以随时向我提出。
import face_recognition import cv2 def compareFaces(known_image, name): known_face_encoding = face_recognition.face_encodings(known_image)[0] for i in range(len(face_locations)): # face_Locations的长度就代表有多少张脸 top1, right1, bottom1, left1 = face_locations[i] face_image = unknown_image[top1:bottom1, left1:right1] face_encoding = face_recognition.face_encodings(face_image) if face_encoding: result = {} matches = face_recognition.compare_faces([unknown_face_encodings[i]], known_face_encoding, tolerance=0.39) if True in matches: print('在未知图片中找到了已知面孔') result['face_encoding'] = face_encoding result['is_view'] = True result['location'] = face_locations[i] result['face_id'] = i + 1 result['face_name'] = name results.append(result) if result['is_view']: print('已知面孔匹配照片上的第{}张脸!!'.format(result['face_id'])) unknown_image = face_recognition.load_image_file('qt.jpg') known_image1 = face_recognition.load_image_file('cs.png') known_image2 = face_recognition.load_image_file('cs1.png') results = [] unknown_face_encodings = face_recognition.face_encodings(unknown_image) face_locations = face_recognition.face_locations(unknown_image) compareFaces(known_image1, 'cs') compareFaces(known_image2, 'cs1') view_faces = [i for i in results if i['is_view']] if len(view_faces) > 0: for view_face in view_faces: top, right, bottom, left = view_face['location'] start = (left, top) end = (right, bottom) cv2.rectangle(unknown_image, start, end, (0, 0, 255), thickness=2) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(unknown_image, view_face['face_name'], (left + 6, bottom + 16), font, 1.0, (255, 255, 255), thickness=1) cv2.imshow('windows', unknown_image) cv2.waitKey()
这段代码看起来是使用了 face_recognition 和 cv2 库来进行人脸比对和标记。它加载了一个未知的图片和两个已知的图片,然后通过 face_recognition 库提取出人脸的编码和位置。接着使用 compareFaces 函数来比对已知图片中的人脸和未知图片中的人脸,并将匹配结果保存在 results 列表中。最后,将匹配到的人脸在未知图片上用矩形框和文字标记出来,并显示在窗口中。
需要注意的是,这段代码中的路径和文件名是固定的,你可能需要根据实际情况修改。另外,由于我是文本 AI,并不能直接运行和显示图片,所以你需要在合适的环境中运行这段代码。
阅读全文