pca=PCA() pca.fit(X) eigenvalues = pca.explained_variance_ cumulative_variances = np.cumsum(eigenvalues) / np.sum(eigenvalues) plt.plot(range(1, len(eigenvalues) + 1), cumulative_variances, marker='o') plt.xlabel('Number of components') plt.ylabel('Cumulative variance ratio') plt.title('Scree plot') plt.show()

时间: 2023-06-26 17:06:15 浏览: 118
这段代码使用PCA算法对数据X进行降维,并绘制Scree plot(屏幕图)。Scree plot是一种可视化方法,用于帮助我们确定应该保留多少主成分(即降维后的特征数量),以保留原始数据中的信息量。在Scree plot中,横坐标表示主成分数量,纵坐标表示累计方差比率,即前n个主成分解释的方差总和与所有主成分解释的方差总和的比率。因此,当我们选择保留n个主成分时,累计方差比率告诉我们我们仍然保留了原始数据的多少信息。在这个例子中,我们使用PCA算法对数据进行降维,并绘制Scree plot来帮助我们确定应该保留多少主成分。
相关问题

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from mpl_toolkits.mplot3d import Axes3D from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler data=pd.read_csv('H:/analysis_results/mean_HN.csv') data.head() x=data.iloc[:,1:7] y=data.iloc[:,6] scaler=StandardScaler() scaler.fit(x) x_scaler=scaler.transform(x) print(x_scaler.shape) pca=PCA(n_components=3) x_pca=pca.fit_transform(x_scaler) print(x_pca.shape) #查看各个主成分对应的方差大小和占全部方差的比例 #可以看到前2个主成分已经解释了样本分布的90%的差异了 print('explained_variance_:',pca.explained_variance_) print('explained_variance_ratio_:',pca.explained_variance_ratio_) print('total explained variance ratio of first 6 principal components:',sum(pca.explained_variance_ratio_)) #将分析的结果保存成字典 result={ 'explained_variance_:',pca.explained_variance_, 'explained_variance_ratio_:',pca.explained_variance_ratio_, 'total explained variance ratio:',np.sum(pca.explained_variance_ratio_)} df=pd.DataFrame.from_dict(result,orient='index',columns=['value']) df.to_csv('H:/analysis_results/Cluster analysis/pca_explained_variance_HN.csv') #可视化各个主成分贡献的方差 #fig1=plt.figure(figsize=(10,10)) #plt.rcParams['figure.dpi'] = 300#设置像素参数值 plt.rcParams['path.simplify'] = False#禁用抗锯齿效果 plt.figure() plt.plot(np.arange(1,4),pca.explained_variance_,color='blue', linestyle='-',linewidth=2) plt.xticks(np.arange(1, 4, 1))#修改X轴间隔为1 plt.title('PCA_plot_HN') plt.xlabel('components_n',fontsize=16) plt.ylabel('explained_variance_',fontsize=16) #plt.savefig('H:/analysis_results/Cluster analysis/pca_explained_variance_HN.png') plt.show()报错unhashable type: 'numpy.ndarray',如何修改

这个错误通常是由于字典中存在不可哈希对象 (unhashable type),比如 numpy 数组,而字典的键必须是可哈希的对象。你可以将 numpy 数组转换为列表,然后再保存到字典中,例如: ``` result={ 'explained_variance_': pca.explained_variance_.tolist(), 'explained_variance_ratio_': pca.explained_variance_ratio_.tolist(), 'total explained variance ratio': np.sum(pca.explained_variance_ratio_) } ``` 这样就可以避免 unhashable type 错误了。

from sklearn.decomposition import PCAimport numpy as np# 初始化PCA对象并拟合数据集pca = PCA()pca.fit(X)# 获取PCA模型中的主成分pcs = pca.components_# 计算每个特征在每个主成分中的贡献度contributions = np.abs(pcs * pca.explained_variance_ratio_)# 对每个样本的特征进行加权平均weights = np.sum(contributions, axis=0)weighted_X = np.dot(X, weights)没有出现最终结果

这段代码实现了对数据集进行PCA降维,并且获取主成分中每个特征的贡献度,然后对每个样本的特征进行加权平均得到降维结果。但是在代码中,缺少输出结果的语句,因此没有最终结果输出。 你可以添加如下代码将结果输出: ``` print("降维后的数据:", weighted_X) ``` 这样就可以输出降维后的数据。
阅读全文

相关推荐

import pandas as pd import numpy as np from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt # 读取数据 data = pd.read_csv('D:/pythonProject/venv/BostonHousing2.csv') # 提取前13个指标的数据 X = data.iloc[:, 5:18].values # 数据标准化 scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # 主成分分析 pca = PCA() X_pca = pca.fit_transform(X_scaled) # 特征值和特征向量 eigenvalues = pca.explained_variance_ eigenvectors = pca.components_.T # 碎石图 variance_explained = np.cumsum(eigenvalues / np.sum(eigenvalues)) plt.plot(range(6, 19), variance_explained, marker='o') plt.xlabel('Number of Components') plt.ylabel('Cumulative Proportion of Variance Explained') plt.title('Scree Plot') plt.show() # 选择主成分个数 n_components = np.sum(variance_explained <= 0.95) + 1 # 前2个主成分的载荷图 loadings = pd.DataFrame(eigenvectors[:, 0:2], columns=['PC1', 'PC2'], index=data.columns[0:13]) plt.figure(figsize=(10, 6)) plt.scatter(loadings['PC1'], loadings['PC2'], alpha=0.7) for i, feature in enumerate(loadings.index): plt.text(loadings['PC1'][i], loadings['PC2'][i], feature) plt.xlabel('PC1') plt.ylabel('PC2') plt.title('Loading Plot') plt.grid() plt.show() # 主成分得分图 scores = pd.DataFrame(X_pca[:, 0:n_components], columns=['PC{}'.format(i+1) for i in range(n_components)]) plt.figure(figsize=(10, 6)) plt.scatter(scores['PC1'], scores['PC2'], alpha=0.7) for i, label in enumerate(data['MEDV']): plt.text(scores['PC1'][i], scores['PC2'][i], label) plt.xlabel('PC1') plt.ylabel('PC2') plt.title('Scores Plot') plt.grid() plt.show() # 综合评估和排序 data['PC1_score'] = X_pca[:, 0] sorted_data = data.sort_values(by='PC1_score') # 主成分回归模型 from sklearn.linear_model import LinearRegression Y = data['MEDV'].values.reshape(-1, 1) X_pca_regression = X_pca[:, 0].reshape(-1, 1) regression_model = LinearRegression() regression_model.fit(X_pca_regression, Y) # 回归方程 intercept = regression_model.intercept_[0] slope = regression_model.coef_[0][0] equation = "MEDV = {:.2f} + {:.2f} * PC1".format(intercept, slope) print("Regression Equation:", equation) # 最小二乘估计结果 from statsmodels.api import OLS X_const = np.concatenate((np.ones((506, 1)), X_pca_regression), axis=1) ols_model = OLS(Y, X_const).fit() print("OLS Regression Summary:") print(ols_model.summary())

import pandas as pd import numpy as np from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt # 读取数据 data = pd.read_csv('D:\\pythonProject\\venv\\BostonHousing2.csv') # 提取前13个指标的数据 X = data.iloc[:, 5:18].values # 数据标准化 scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # 主成分分析 pca = PCA() X_pca = pca.fit_transform(X_scaled) # 特征值和特征向量 eigenvalues = pca.explained_variance_ eigenvectors = pca.components_.T # 碎石图 # variance_explained我给你放到下一个cell里面了,这里用eigenvalues代替variance_explained plt.plot(range(1, 14), eigenvalues, marker='o') plt.xlabel('Number of Components') plt.ylabel('Cumulative Proportion of Variance Explained') plt.title('Scree Plot') plt.show() # 选择主成分个数 variance_explained = np.cumsum(eigenvalues / np.sum(eigenvalues)) n_components = np.sum(variance_explained <= 0.95) + 1 # 前2个主成分的载荷图 loadings = pd.DataFrame(eigenvectors[:, 0:2], columns=['PC1', 'PC2'], index=data.columns[0:13]) plt.figure(figsize=(10, 6)) plt.scatter(loadings['PC1'], loadings['PC2'], alpha=0.7) for i, feature in enumerate(loadings.index): plt.text(loadings['PC1'][i], loadings['PC2'][i], feature) plt.xlabel('PC1') plt.ylabel('PC2') plt.title('Loading Plot') plt.grid() plt.show() # 主成分得分图 scores = pd.DataFrame(X_pca[:, 0:n_components], columns=['PC{}'.format(i+1) for i in range(n_components)]) plt.figure(figsize=(10, 6)) plt.scatter(scores['PC1'], scores['PC2'], alpha=0.7) for i, label in enumerate(data['medv']): plt.text(scores['PC1'][i], scores['PC2'][i], label) plt.xlabel('PC1') plt.ylabel('PC2') plt.title('Scores Plot') plt.grid() plt.show() # 综合评估和排序 data['PC1_score'] = X_pca[:, 0] sorted_data = data.sort_values(by='PC1_score') # 主成分回归模型 from sklearn.linear_model import LinearRegression Y = data['medv'].values.reshape(-1, 1) X_pca_regression = X_pca[:, 0].reshape(-1, 1) regression_model = LinearRegression() regression_model.fit(X_pca_regression, Y) # 回归方程 intercept = regression_model.intercept_[0] slope = regression_model.coef_[0][0] equation = "medv = {:.2f} + {:.2f} * PC1".format(intercept, slope) print("Regression Equation:", equation) # 最小二乘估计结果 from statsmodels.api import OLS X_const = np.concatenate((np.ones((506, 1)), X_pca_regression), axis=1) ols_model = OLS(Y, X_const).fit() print("OLS Regression Summary:") print(ols_model.summary())

大家在看

recommend-type

基于Python深度学习的目标跟踪系统的设计与实现+全部资料齐全+部署文档.zip

【资源说明】 基于Python深度学习的目标跟踪系统的设计与实现+全部资料齐全+部署文档.zip基于Python深度学习的目标跟踪系统的设计与实现+全部资料齐全+部署文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

python版-百家号-seleiunm-全自动发布文案-可多账号-多文案-解放双手 -附带seleiunm源码-二次开发可用

python版_百家号_seleiunm_全自动发布文案_可多账号_多文案_解放双手 _附带seleiunm源码_二次开发可用
recommend-type

NEW.rar_fatherxbi_fpga_verilog 大作业_verilog大作业_投币式手机充电仪

Verilog投币式手机充电仪 清华大学数字电子技术基础课程EDA大作业。刚上电数码管全灭,按开始键后,数码管显示全为0。输入一定数额,数码管显示该数额的两倍对应的时间,按确认后开始倒计时。输入数额最多为20。若10秒没有按键,数码管全灭。
recommend-type

IEC 62133-2-2021最新中文版.rar

IEC 62133-2-2021最新中文版.rar
recommend-type

基于springboot的毕设-疫情网课管理系统(源码+配置说明).zip

基于springboot的毕设-疫情网课管理系统(源码+配置说明).zip 【项目技术】 开发语言:Java 框架:springboot 架构:B/S 数据库:mysql 【实现功能】 网课管理系统分为管理员和学生、教师三个角色的权限子模块。 管理员所能使用的功能主要有:首页、个人中心、学生管理、教师管理、班级管理、课程分类管理、课程表管理、课程信息管理、作业信息管理、请假信息管理、上课签到管理、论坛交流、系统管理等。 学生可以实现首页、个人中心、课程表管理、课程信息管理、作业信息管理、请假信息管理、上课签到管理等。 教师可以实现首页、个人中心、学生管理、班级管理、课程分类管理、课程表管理、课程信息管理、作业信息管理、请假信息管理、上课签到管理、系统管理等。

最新推荐

recommend-type

舵机控制中PCA9685控制芯片的运用.docx

在这样的背景下,PCA9685控制芯片凭借其出色的性能和控制精度,成为舵机控制中的一颗耀眼的新星。 PCA9685控制芯片作为一款通过I2C总线通信的PWM信号发生器,具备强大的功能和良好的兼容性。该芯片能够接收主控芯片...
recommend-type

具体介绍sklearn库中:主成分分析(PCA)的参数、属性、方法

PCA(主成分分析)是一种广泛应用于数据降维的统计学方法,它的目标是将高维数据转换为一组线性不相关的低维表示,即主成分。这些主成分是原始特征的线性组合,且彼此正交,从而保留了数据的主要信息。在Python的...
recommend-type

PCA降维python的代码以及结果.doc

4. 降维:R = pca.fit_transform(A) 5. 可视化结果:plt.scatter(R[:, 0], R[:, 1]) 四、对 iris 数据集进行降维 使用 sklearn 库可以对 iris 数据集进行降维,步骤如下: 1. 导入 iris 数据集:from sklearn....
recommend-type

利用PCA降维方法处理高光谱图像(matlab)

代码中的`cumsum(latent)./sum(latent)`计算的就是累积方差贡献率。 降维后的特征向量通过`reshape()`函数恢复为三维结构,以便重新构建图像。`imwrite()`函数用于保存降维后的图像,可以观察到图像在不同主成分下...
recommend-type

租赁合同编写指南及下载资源

资源摘要信息:《租赁合同》是用于明确出租方与承租方之间的权利和义务关系的法律文件。在实际操作中,一份详尽的租赁合同对于保障交易双方的权益至关重要。租赁合同应当包括但不限于以下要点: 1. 双方基本信息:租赁合同中应明确出租方(房东)和承租方(租客)的名称、地址、联系方式等基本信息。这对于日后可能出现的联系、通知或法律诉讼具有重要意义。 2. 房屋信息:合同中需要详细说明所租赁的房屋的具体信息,包括房屋的位置、面积、结构、用途、设备和家具清单等。这些信息有助于双方对租赁物有清晰的认识。 3. 租赁期限:合同应明确租赁开始和结束的日期,以及租期的长短。租赁期限的约定关系到租金的支付和合同的终止条件。 4. 租金和押金:租金条款应包括租金金额、支付周期、支付方式及押金的数额。同时,应明确规定逾期支付租金的处理方式,以及押金的退还条件和时间。 5. 维修与保养:在租赁期间,房屋的维护和保养责任应明确划分。通常情况下,房东负责房屋的结构和主要设施维修,而租客需负责日常维护及保持房屋的清洁。 6. 使用与限制:合同应规定承租方可以如何使用房屋以及可能的限制。例如,禁止非法用途、允许或禁止宠物、是否可以转租等。 7. 终止与续租:租赁合同应包括租赁关系的解除条件,如提前通知时间、违约责任等。同时,双方可以在合同中约定是否可以续租,以及续租的条件。 8. 解决争议的条款:合同中应明确解决可能出现的争议的途径,包括适用法律、管辖法院等,有助于日后纠纷的快速解决。 9. 其他可能需要的条款:根据具体情况,合同中可能还需要包括关于房屋保险、税费承担、合同变更等内容。 下载资源链接:【下载自www.glzy8.com管理资源吧】Rental contract.DOC 该资源为一份租赁合同模板,对需要进行房屋租赁的个人或机构提供了参考价值。通过对合同条款的详细列举和解释,该文档有助于用户了解和制定自己的租赁合同,从而在房屋租赁交易中更好地保护自己的权益。感兴趣的用户可以通过提供的链接下载文档以获得更深入的了解和实际操作指导。
recommend-type

【项目管理精英必备】:信息系统项目管理师教程习题深度解析(第四版官方教材全面攻略)

![信息系统项目管理师教程-第四版官方教材课后习题-word可编辑版](http://www.bjhengjia.net/fabu/ewebeditor/uploadfile/20201116152423446.png) # 摘要 信息系统项目管理是确保项目成功交付的关键活动,涉及一系列管理过程和知识领域。本文深入探讨了信息系统项目管理的各个方面,包括项目管理过程组、知识领域、实践案例、管理工具与技术,以及沟通和团队协作。通过分析不同的项目管理方法论(如瀑布、迭代、敏捷和混合模型),并结合具体案例,文章阐述了项目管理的最佳实践和策略。此外,本文还涵盖了项目管理中的沟通管理、团队协作的重要性,
recommend-type

最具代表性的改进过的UNet有哪些?

UNet是一种广泛用于图像分割任务的卷积神经网络结构,它的特点是结合了下采样(编码器部分)和上采样(解码器部分),能够保留细节并生成精确的边界。为了提高性能和适应特定领域的需求,研究者们对原始UNet做了许多改进,以下是几个最具代表性的变种: 1. **DeepLab**系列:由Google开发,通过引入空洞卷积(Atrous Convolution)、全局平均池化(Global Average Pooling)等技术,显著提升了分辨率并保持了特征的多样性。 2. **SegNet**:采用反向传播的方式生成全尺寸的预测图,通过上下采样过程实现了高效的像素级定位。 3. **U-Net+
recommend-type

惠普P1020Plus驱动下载:办公打印新选择

资源摘要信息: "最新惠普P1020Plus官方驱动" 1. 惠普 LaserJet P1020 Plus 激光打印机概述: 惠普 LaserJet P1020 Plus 是惠普公司针对家庭、个人办公以及小型办公室(SOHO)市场推出的一款激光打印机。这款打印机的设计注重小巧体积和便携操作,适合空间有限的工作环境。其紧凑的设计和高效率的打印性能使其成为小型企业或个人用户的理想选择。 2. 技术特点与性能: - 预热技术:惠普 LaserJet P1020 Plus 使用了0秒预热技术,能够极大减少打印第一张页面所需的等待时间,首页输出时间不到10秒。 - 打印速度:该打印机的打印速度为每分钟14页,适合处理中等规模的打印任务。 - 月打印负荷:月打印负荷高达5000页,保证了在高打印需求下依然能稳定工作。 - 标配硒鼓:标配的2000页打印硒鼓能够为用户提供较长的使用周期,减少了更换耗材的频率,节约了长期使用成本。 3. 系统兼容性: 驱动程序支持的操作系统包括 Windows Vista 64位版本。用户在使用前需要确保自己的操作系统版本与驱动程序兼容,以保证打印机的正常工作。 4. 市场表现: 惠普 LaserJet P1020 Plus 在上市之初便获得了市场的广泛认可,创下了百万销量的辉煌成绩,这在一定程度上证明了其可靠性和用户对其性能的满意。 5. 驱动程序文件信息: 压缩包内包含了适用于该打印机的官方驱动程序文件 "lj1018_1020_1022-HB-pnp-win64-sc.exe"。该文件是安装打印机驱动的执行程序,用户需要下载并运行该程序来安装驱动。 另一个文件 "jb51.net.txt" 从命名上来看可能是一个文本文件,通常这类文件包含了关于驱动程序的安装说明、版本信息或是版权信息等。由于具体内容未提供,无法确定确切的信息。 6. 使用场景: 由于惠普 LaserJet P1020 Plus 的打印速度和负荷能力,它适合那些需要快速、频繁打印文档的用户,例如行政助理、会计或小型法律事务所。它的紧凑设计也使得这款打印机非常适合在桌面上使用,从而不占用过多的办公空间。 7. 后续支持与维护: 用户在购买后可以通过惠普官方网站获取最新的打印机驱动更新以及技术支持。在安装新驱动之前,建议用户先卸载旧的驱动程序,以避免版本冲突或不必要的错误。 8. 其它注意事项: - 用户在使用打印机时应注意按照官方提供的维护说明定期进行清洁和保养,以确保打印质量和打印机的使用寿命。 - 如果在打印过程中遇到任何问题,应先检查打印机设置、驱动程序是否正确安装以及是否有足够的打印纸张和墨粉。 综上所述,惠普 LaserJet P1020 Plus 是一款性能可靠、易于使用的激光打印机,特别适合小型企业或个人用户。正确的安装和维护可以确保其稳定和高效的打印能力,满足日常办公需求。
recommend-type

数字电路实验技巧:10大策略,让你的实验效率倍增!

![数字电路实验技巧:10大策略,让你的实验效率倍增!](https://avatars.dzeninfra.ru/get-zen_doc/3964212/pub_5f76d5f2109e8f703cdee289_5f76f3c10d5f8951c997167a/scale_1200) # 摘要 本论文详细介绍了数字电路实验的基础理论、设备使用、设计原则、实践操作、调试与故障排除以及报告撰写与成果展示。首先探讨了数字电路实验所需的基本理论和实验设备的种类与使用技巧,包括测量和故障诊断方法。接着,深入分析了电路设计的原则,涵盖设计流程、逻辑简化、优化策略及实验方案的制定。在实践操作章节中,具体
recommend-type

altium designer布线

### Altium Designer 布线教程和技巧 #### 一、环境设置与准备 为了更高效地完成布线工作,前期的准备工作至关重要。确保原理图已经完全无误并编译成功[^2]。 #### 二、同步查看原理图与PCB布局 通过在原理图标题栏处右键点击并选择 "Split Vertical" 可实现原理图和PCB视图的同时展示,这有助于理解电路连接关系以及提高布线效率。 #### 三、自动布线器配置 Altium Designer内置有强大的自动布线功能。进入“Tools -> PCB Rules and Constraints Editor”,可以自定义诸如最小间距、过孔尺寸等参数来满足