----> 1 pd.DataFrame({'方差': pca.explained_variance_, 2 '贡献度':pca.explained_variance_ratio_, 3 '累计贡献度':pca.explained_variance_ratio_.cumsum()}) 4 plt.bar(range(n), pca.explained_variance_ratio_) 5 plt.title('贡献度') AttributeError: 'PCA' object has no attribute 'explained_variance_'
时间: 2024-03-29 09:38:22 浏览: 342
这个错误的原因是PCA对象没有属性explained_variance_。可能是在调用PCA对象之前没有正确地进行PCA降维处理。请检查代码,确保在调用PCA对象之前进行了正确的数据预处理和PCA降维处理。你可以先查看一下数据是否正确,是否包含缺失值或异常值。另外,建议在PCA对象的初始化过程中设置参数n_components,这个参数可以指定降维后的数据维度,例如:pca = PCA(n_components=2)。
相关问题
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from mpl_toolkits.mplot3d import Axes3D from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler data=pd.read_csv('H:/analysis_results/mean_HN.csv') data.head() x=data.iloc[:,1:7] y=data.iloc[:,6] scaler=StandardScaler() scaler.fit(x) x_scaler=scaler.transform(x) print(x_scaler.shape) pca=PCA(n_components=3) x_pca=pca.fit_transform(x_scaler) print(x_pca.shape) #查看各个主成分对应的方差大小和占全部方差的比例 #可以看到前2个主成分已经解释了样本分布的90%的差异了 print('explained_variance_:',pca.explained_variance_) print('explained_variance_ratio_:',pca.explained_variance_ratio_) print('total explained variance ratio of first 6 principal components:',sum(pca.explained_variance_ratio_)) #将分析的结果保存成字典 result={ 'explained_variance_:',pca.explained_variance_, 'explained_variance_ratio_:',pca.explained_variance_ratio_, 'total explained variance ratio:',np.sum(pca.explained_variance_ratio_)} df=pd.DataFrame.from_dict(result,orient='index',columns=['value']) df.to_csv('H:/analysis_results/Cluster analysis/pca_explained_variance_HN.csv') #可视化各个主成分贡献的方差 #fig1=plt.figure(figsize=(10,10)) #plt.rcParams['figure.dpi'] = 300#设置像素参数值 plt.rcParams['path.simplify'] = False#禁用抗锯齿效果 plt.figure() plt.plot(np.arange(1,4),pca.explained_variance_,color='blue', linestyle='-',linewidth=2) plt.xticks(np.arange(1, 4, 1))#修改X轴间隔为1 plt.title('PCA_plot_HN') plt.xlabel('components_n',fontsize=16) plt.ylabel('explained_variance_',fontsize=16) #plt.savefig('H:/analysis_results/Cluster analysis/pca_explained_variance_HN.png') plt.show()报错unhashable type: 'numpy.ndarray',如何修改
这个错误通常是由于字典中存在不可哈希对象 (unhashable type),比如 numpy 数组,而字典的键必须是可哈希的对象。你可以将 numpy 数组转换为列表,然后再保存到字典中,例如:
```
result={
'explained_variance_': pca.explained_variance_.tolist(),
'explained_variance_ratio_': pca.explained_variance_ratio_.tolist(),
'total explained variance ratio': np.sum(pca.explained_variance_ratio_)
}
```
这样就可以避免 unhashable type 错误了。
import pandas as pd import numpy as np from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt # 读取数据 data = pd.read_csv('D:/pythonProject/venv/BostonHousing2.csv') # 提取前13个指标的数据 X = data.iloc[:, 5:18].values # 数据标准化 scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # 主成分分析 pca = PCA() X_pca = pca.fit_transform(X_scaled) # 特征值和特征向量 eigenvalues = pca.explained_variance_ eigenvectors = pca.components_.T # 碎石图 variance_explained = np.cumsum(eigenvalues / np.sum(eigenvalues)) plt.plot(range(6, 19), variance_explained, marker='o') plt.xlabel('Number of Components') plt.ylabel('Cumulative Proportion of Variance Explained') plt.title('Scree Plot') plt.show() # 选择主成分个数 n_components = np.sum(variance_explained <= 0.95) + 1 # 前2个主成分的载荷图 loadings = pd.DataFrame(eigenvectors[:, 0:2], columns=['PC1', 'PC2'], index=data.columns[0:13]) plt.figure(figsize=(10, 6)) plt.scatter(loadings['PC1'], loadings['PC2'], alpha=0.7) for i, feature in enumerate(loadings.index): plt.text(loadings['PC1'][i], loadings['PC2'][i], feature) plt.xlabel('PC1') plt.ylabel('PC2') plt.title('Loading Plot') plt.grid() plt.show() # 主成分得分图 scores = pd.DataFrame(X_pca[:, 0:n_components], columns=['PC{}'.format(i+1) for i in range(n_components)]) plt.figure(figsize=(10, 6)) plt.scatter(scores['PC1'], scores['PC2'], alpha=0.7) for i, label in enumerate(data['MEDV']): plt.text(scores['PC1'][i], scores['PC2'][i], label) plt.xlabel('PC1') plt.ylabel('PC2') plt.title('Scores Plot') plt.grid() plt.show() # 综合评估和排序 data['PC1_score'] = X_pca[:, 0] sorted_data = data.sort_values(by='PC1_score') # 主成分回归模型 from sklearn.linear_model import LinearRegression Y = data['MEDV'].values.reshape(-1, 1) X_pca_regression = X_pca[:, 0].reshape(-1, 1) regression_model = LinearRegression() regression_model.fit(X_pca_regression, Y) # 回归方程 intercept = regression_model.intercept_[0] slope = regression_model.coef_[0][0] equation = "MEDV = {:.2f} + {:.2f} * PC1".format(intercept, slope) print("Regression Equation:", equation) # 最小二乘估计结果 from statsmodels.api import OLS X_const = np.concatenate((np.ones((506, 1)), X_pca_regression), axis=1) ols_model = OLS(Y, X_const).fit() print("OLS Regression Summary:") print(ols_model.summary())
这段代码是用 Python 对波士顿房价数据进行主成分分析(PCA)。该代码读取了一个名为 "BostonHousing2.csv" 的数据文件,并将前 13 个指标的数据提取出来,进行了数据标准化和主成分分析。其中,碎石图展示了不同主成分个数下的累计方差贡献率,用于选择主成分个数;载荷图展示了前两个主成分对原始数据各个指标的影响程度;得分图展示了每个房价样本在前两个主成分上的得分情况,用于评估房价的相对位置。最后,该代码还进行了主成分回归模型和最小二乘估计结果的计算和展示。
阅读全文