无人驾驶路径规划python代码
时间: 2023-09-08 10:10:19 浏览: 80
以下一个简单的无人驾驶路径规划的 Python 代码示例,使用 A* 算法:
```python
import heapq
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.g = 0
self.h = 0
self.f = 0
self.parent = None
def __lt__(self, other):
return self.f < other.f
class AStar:
def __init__(self, grid):
self.grid = grid
self.width = len(grid[0])
self.height = len(grid)
self.open_list = []
self.closed_list = set()
def heuristic(self, node, goal):
return abs(node.x - goal.x) + abs(node.y - goal.y)
def get_neighbors(self, node):
neighbors = []
for dx in [-1, 0, 1]:
for dy in [-1, 0, 1]:
if dx == 0 and dy == 0:
continue
x = node.x + dx
y = node.y + dy
if x >= 0 and x < self.width and y >= 0 and y < self.height and self.grid[y][x] == 0:
neighbors.append(Node(x, y))
return neighbors
def get_path(self, start, goal):
start_node = Node(start[0], start[1])
goal_node = Node(goal[0], goal[1])
heapq.heappush(self.open_list, start_node)
while len(self.open_list) > 0:
current_node = heapq.heappop(self.open_list)
if current_node.x == goal_node.x and current_node.y == goal_node.y:
path = []
while current_node.parent is not None:
path.append((current_node.x, current_node.y))
current_node = current_node.parent
path.append((start_node.x, start_node.y))
path.reverse()
return path
self.closed_list.add((current_node.x, current_node.y))
neighbors = self.get_neighbors(current_node)
for neighbor in neighbors:
if (neighbor.x, neighbor.y) in self.closed_list:
continue
if neighbor not in self.open_list:
neighbor.g = current_node.g + 1
neighbor.h = self.heuristic(neighbor, goal_node)
neighbor.f = neighbor.g + neighbor.h
neighbor.parent = current_node
heapq.heappush(self.open_list, neighbor)
else:
if current_node.g + 1 < neighbor.g:
neighbor.g = current_node.g + 1
neighbor.f = neighbor.g + neighbor.h
neighbor.parent = current_node
return None
# 示例使用
grid = [
[0, 0, 0, 0, 0],
[0, 1, 0, 1, 0],
[0, 1, 0, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 0]
]
start = (0, 0)
goal = (4, 4)
astar = AStar(grid)
path = astar.get_path(start, goal)
print(path)
```
在这个示例中,我们使用了一个 5x5 的网格,并在其中定义了起点和终点。我们还定义了一个 `AStar` 类,它包含了 A* 算法的主要逻辑,包括启发式函数、获取邻居节点等。最后,我们将起点和终点传递给 AStar 类的 `get_path` 方法,它将返回一条可行的路径。
阅读全文