batch_size = tf.shape(pc)[0]
时间: 2024-06-02 08:14:19 浏览: 117
This line of code is creating a TensorFlow operation that finds the number of rows in the tensor "pc" and assigns it to the variable "batch_size".
The "tf.shape()" function returns the shape of a tensor as a 1-D integer tensor. We are passing "pc" as an argument to this function, which means we want to find the shape of "pc". The first element of the resulting tensor represents the number of rows in "pc", which is the batch size of the input data.
We then assign this value to the variable "batch_size" using the TensorFlow assignment operation. This variable can be later used in the code to perform operations that depend on the batch size of the input data.
相关问题
帮我创建一个TF Keras Sequential API, ZEROPAD2D -> CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> FLATTEN -> DENSE
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import ZeroPadding2D, Conv2D, BatchNormalization, Activation, MaxPool2D, Flatten, Dense
model = Sequential([
ZeroPadding2D(padding=(1, 1), input_shape=your_input_shape),
Conv2D(filters=your_num_filters, kernel_size=your_kernel_size),
BatchNormalization(),
Activation('relu'),
MaxPool2D(pool_size=(2, 2)),
Flatten(),
Dense(units=your_num_units)
])
请注意,这只是一个示例,你需要根据你的具体需求和输入数据的形状来调整模型的参数和层的结构。<em>1</em><em>2</em><em>3</em>
#### 引用[.reference_title]
- *1* *2* *3* [吴恩达作业(6)CNN神经网络(keras实现)-识别笑脸](https://blog.csdn.net/GuoShao_/article/details/126216458)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}} ] [.reference_item]
[ .reference_list ]
阅读全文