机器学习准确率召回率计算
时间: 2023-09-25 11:17:11 浏览: 88
机器学习模型的准确率和召回率是常用的评估指标之一。
准确率(precision)是指模型预测为正样本的样本中,实际为正样本的比例,即:
$$Precision = \frac{TP}{TP+FP}$$
其中,$TP$(True Positive)表示模型正确预测为正样本的数量,$FP$(False Positive)表示模型错误预测为正样本的数量。
召回率(recall)是指实际为正样本的样本中,被模型正确预测为正样本的比例,即:
$$Recall = \frac{TP}{TP+FN}$$
其中,$FN$(False Negative)表示模型错误预测为负样本的数量。
在实际应用中,准确率和召回率往往需要综合考虑。如果我们希望尽可能多地捕捉到真正的正样本,可以优先考虑召回率;如果我们关注的是预测的准确性,可以优先考虑准确率。常用的综合评价指标包括F1-score,它是准确率和召回率的调和平均数:
$$F1 = \frac{2 \times Precision \times Recall}{Precision+Recall}$$
F1-score越大,表示模型的综合表现越好。
阅读全文